2,959 research outputs found

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    Steering for a Class of Dynamic Nonholonomic Systems

    Get PDF
    In this paper we derive control algorithms for a class of dynamic nonholonomic steering problems, characterized as mechanical systems with nonholonomic constraints and symmetries. Recent research in geometric mechanics has led to a single, simplified framework that describes this class of systems, which includes examples such as wheeled mobile robots; undulatory robotic and biological locomotion systems, such as paramecia, inchworms, and snakes; and the reorientation of satellites and underwater vehicles. This geometric framework has also been applied to more unusual examples, such as the snakeboard robot, bicycles, the wobblestone, and the reorientation of a falling cat. We use this geometric framework as a basis for developing two types of control algorithms for such systems. The first is geared towards local controllability, using a perturbation approach to establish results similar to steering using sinusoids. The second method utilizes these results in applying more traditional steering algorithms for mobile robots, and is directed towards generating more non-local control methods of steering for this class of systems

    Enumeration and Motion Planning for Modular Mobile Robots

    Get PDF
    This report focuses on two different aspects of modular robots, the enumeration of distinct configurations of a modular robot and the generation of gaits for hybrid robots with wheels and legs. Given a particular set of modules from which the robot can be formed, a modular robot made up of these modules can attain a number of different configurations based on the relative attachment of the modules. The distinct configurations possible are enumerated for a locomotion system consisting of a base with multiple ports where wheel or leg modules can be attached. Given a particular configuration of the modular robot, we would like to generate a set of inputs that would drive the robot from an initial position to a desired position. The method used for this must be applicable to different kinds of modules that may be used for locomotion. The method presented here involves generating a set of constant inputs that will drive a drift-free system from an initial to a final desired position. Simulation results are generated for translation and rotation of the robot and motion along a Lie Bracket direction (sideways motion) for the hybrid mobile robot

    Modeling and Control of Formations of Nonholonomic Mobile Robots

    Get PDF
    This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory.We model the team as a triple, (g, r, H), consisting of a group element that describes the gross position of the lead robot, a set of shape variables g that describe the relative positions of robots, and a control graph H that describes the behaviors of the robots in the formation. Our framework enables the representation and enumeration of possible control graphs and the coordination of transitions between any two formations

    Stochastic Acceleration in Relativistic Parallel Shocks

    Full text link
    (abridged) We present results of test-particle simulations on both the first and the second order Fermi acceleration at relativistic parallel shock waves. We consider two scenarios for particle injection: (i) particles injected at the shock front, then accelerated at the shock by the first order mechanism and subsequently by the stochastic process in the downstream region; and (ii) particles injected uniformly throughout the downstream region to the stochastic process. We show that regardless of the injection scenario, depending on the magnetic field strength, plasma composition, and the employed turbulence model, the stochastic mechanism can have considerable effects on the particle spectrum on temporal and spatial scales too short to be resolved in extragalactic jets. Stochastic acceleration is shown to be able to produce spectra that are significantly flatter than the limiting case of particle energy spectral index -1 of the first order mechanism. Our study also reveals a possibility of re-acceleration of the stochastically accelerated spectrum at the shock, as particles at high energies become more and more mobile as their mean free path increases with energy. Our findings suggest that the role of the second order mechanism in the turbulent downstream of a relativistic shock with respect to the first order mechanism at the shock front has been underestimated in the past, and that the second order mechanism may have significant effects on the form of the particle spectra and its evolution.Comment: 14 pages, 11 figures (9 black/white and 2 color postscripts). To be published in the ApJ (accepted 6 Nov 2004

    Vision Based Control of Model Helicopters

    Get PDF

    Motion Planning in Humans and Robots

    Get PDF
    We present a general framework for generating trajectories and actuator forces that will take a robot system from an initial configuration to a goal configuration in the presence of obstacles observed with noisy sensors. The central idea is to find the motion plan that optimizes a performance criterion dictated by specific task requirements. The approach is motivated by studies of human voluntary manipulation tasks that suggest that human motions can be described as solutions of certain optimization problems

    The pacific chapter annual meeting of the undersea & hyperbaric medical society

    Get PDF
    The following is the summary report on the UHMS Pacific Chapter Annual Meeting held in Long Beach in October 2010. The conference provided the latest updates on scientific, technical and organizational aspects of Hyperbaric and Diving Medicine. Invited speakers gave series of lectures dealing with current standards of clinical practice and presenting the results of laboratory investigations with particular emphasis on mechanisms of hyperbaric oxygen therapy. Scientific sessions were accompanied by vendor exhibits and social events
    corecore