159 research outputs found

    Hypoxia and adipose tissue function and dysfunction in obesity

    Get PDF
    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signalling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors – the adipokines. Increases in the secretion of a number of adipokines occurs in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in pO2 is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of inflammation-related adipokines is up-regulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilisation is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at pO2 levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity

    Introduced Pathogens and Native Freshwater Biodiversity: A Case Study of Sphaerothecum destruens

    Get PDF
    A recent threat to European fish diversity was attributed to the association between an intracellular parasite, Sphaerothecum destruens, and a healthy freshwater fish carrier, the invasive Pseudorasbora parva originating from China. The pathogen was found to be responsible for the decline and local extinction of the European endangered cyprinid Leucaspius delineatus and high mortalities in stocks of Chinook and Atlantic salmon in the USA. Here, we show that the emerging S. destruens is also a threat to a wider range of freshwater fish than originally suspected such as bream, common carp, and roach. This is a true generalist as an analysis of susceptible hosts shows that S. destruens is not limited to a phylogenetically narrow host spectrum. This disease agent is a threat to fish biodiversity as it can amplify within multiple hosts and cause high mortalities

    Sodium/myo-Inositol Transporters: Substrate Transport Requirements and Regional Brain Expression in the TgCRND8 Mouse Model of Amyloid Pathology

    Get PDF
    Inositol stereoisomers, myo- and scyllo-inositol, are known to enter the brain and are significantly elevated following oral administration. Elevations in brain inositol levels occur across a concentration gradient as a result of active transport from the periphery. There are two sodium/myo-inositol transporters (SMIT1, SMIT2) that may be responsible for regulating brain inositol levels. The goals of this study were to determine the effects of aging and Alzheimer's disease (AD)-like amyloid pathology on transporter expression, to compare regional expression and to analyze substrate requirements of the inositol transporters. QPCR was used to examine expression of the two transporters in the cortex, hippocampus and cerebellum of TgCRND8 mice, a mouse model of amyloid pathology, in comparison to non-transgenic littermates. In addition, we examined the structural features of inositol required for active transport, utilizing a cell-based competitive uptake assay. Disease pathology did not alter transporter expression in the cortex or hippocampus (p>0.005), with only minimal effects of aging observed in the cerebellum (SMIT1: F2,26 = 12.62; p = 0.0002; SMIT2: F2,26 = 8.71; p = 0.0015). Overall, brain SMIT1 levels were higher than SMIT2, however, regional differences were observed. For SMIT1, at 4 and 6 months cerebellar SMIT1 levels were significantly higher than cortical and hippocampal levels (p<0.05). For SMIT2, at all three ages both cortical and cerebellar SMIT2 levels were significantly higher than hippocampal levels (p<0.05) and at 4 and 6 months of age, cerebellar SMIT2 levels were also significantly higher than cortical levels (p<0.05). Inositol transporter levels are stably expressed as a function of age, and expression is unaltered with disease pathology in the TgCRND8 mouse. Given the fact that scyllo-inositol is currently in clinical trials for the treatment of AD, the stable expression of inositol transporters regardless of disease pathology is an important finding

    Pregnancy weight gain and breast cancer risk

    Get PDF
    BACKGROUND: Elevated pregnancy estrogen levels are associated with increased risk of developing breast cancer in mothers. We studied whether pregnancy weight gain that has been linked to high circulating estrogen levels, affects a mother's breast cancer risk. METHODS: Our cohort consisted of women who were pregnant between 1954–1963 in Helsinki, Finland, 2,089 of which were eligible for the study. Pregnancy data were collected from patient records of maternity centers. 123 subsequent breast cancer cases were identified through a record linkage to the Finnish Cancer Registry, and the mean age at diagnosis was 56 years (range 35 – 74). A sample of 979 women (123 cases, 856 controls) from the cohort was linked to the Hospital Inpatient Registry to obtain information on the women's stay in hospitals. RESULTS: Mothers in the upper tertile of pregnancy weight gain (>15 kg) had a 1.62-fold (95% CI 1.03–2.53) higher breast cancer risk than mothers who gained the recommended amount (the middle tertile, mean: 12.9 kg, range 11–15 kg), after adjusting for mother's age at menarche, age at first birth, age at index pregnancy, parity at the index birth, and body mass index (BMI) before the index pregnancy. In a separate nested case-control study (n = 65 cases and 431 controls), adjustment for BMI at the time of breast cancer diagnosis did not modify the findings. CONCLUSIONS: Our study suggests that high pregnancy weight gain increases later breast cancer risk, independently from body weight at the time of diagnosis

    Inhibition of TGF-β Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats

    Get PDF
    Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR
    • …
    corecore