1,048 research outputs found

    Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    Get PDF
    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance

    Analysis of two-dimensional incompressible flow past airfoils using unsteady Navier-Stokes equations

    Get PDF
    The conservative form of the unsteady Navier-Stokes equations in terms of vorticity and stream function in generalized curvilinear coordinates are used to analyze the flow structure of steady separation and unsteady flow with massive separation. The numerical method solves the discretized equations using an ADI-BGE method. The method is applied to a symmetric 12 percent thick Joukowski airfoil. A conformal clustered grid is generated; several 1-D stretching transformations are used to obtain a grid that attempts to resolve many of the multiple scales of the unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. Detailed numerical results are obtained for three flow configurations (1) Re = 1000, alpha = 5 deg., (2) Re =1000, alpha = 15 deg., (3) Re = 10,000, alpha = 5 deg. No artificial dissipation was added; however, lack of a fine grid in the normal direction has presently led to results which are considered qualitative, especially for case (3)

    Characterization of dynamic stall phenomenon using two-dimensional unsteady Navier-Stokes equations

    Get PDF
    Among the new significant aspects of the present work are: (1) the treatment of the far-field boundary; (2) the use of C-grid topology, with the branch-cut singularity treated analytically; (3) evaluation of the effect of the envelope of prevailing initial states, and finally; (4) the ability to employ streakline/pathline 'visualization' to probe the unsteady features prevailing in vortex-dominated flows. The far-field boundary is placed at infinity, using appropriate grid stretching. This contributes to the accuracy of the solutions, but raised a number of important issues which needed to be resolved; this includes determining the equivalent time-dependent circulation for the pitching airfoil. A secondary counter-clockwise vortex erupts from within the boundary layer and immediately pinches off the energetic leading-edge shear layer which then, through hydrodynamic instability, rolls up into the dynamic stall vortex. The streakline/pathline visualization serves to provide information for insight into the physics of the unsteady separated flow

    A new ultra low-level HPGe activity counting setup in the Felsenkeller shallow-underground laboratory

    Full text link
    A new ultra low-level counting setup has been installed in the shallow-underground laboratory Felsenkeller in Dresden, Germany. It includes a high-purity germanium detector (HPGe) of 163\% relative efficiency within passive and active shields. The passive shield consists of 45m rock overburden (140 meters water equivalent), 40 cm of low-activity concrete, and a lead and copper castle enclosed by an anti-radon box. The passive shielding alone is found to reduce the background rate to rates comparable to other shallow-underground laboratories. An additional active veto is given by five large plastic scintillation panels surrounding the setup. It further reduces the background rate by more than one order of magnitude down to 116±\pm1 kg1^{-1} d1^{-1} in an energy interval of 40-2700 keV. This low background rate is unprecedented for shallow-underground laboratories and close to deep underground laboratories.Comment: Submitted to Astroparticle Physics; corrected typo in abstrac

    Too little, too late: reduced visual span and speed characterize pure alexia

    Get PDF
    Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected

    The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites

    Get PDF
    The article of record as published may be found at: http://dx.doi.org/10.1002/polb.23225Several solvent-free processing methods to disperse multiwalled carbon nanotubes (MWCNTs) in bisphenol F-based epoxy resin were investigated, including the use of a microfluidizer (MF), planetary shear mixer (PSM), ultrasonication (US) and combinations. The processed mixture was cured with diethyl toluene diamine. Three complimentary techniques were used to characterize the dispersion of the MWCNTs in cured composite samples: optical microscopy, micro Raman spectroscopy, and scanning electron microscopy (SEM). For sample MF þ PSM, optical micrographs and Raman images showed reduced agglomeration and a homogeneous distribution of MWCNTs in the epoxy matrix. SEM analysis of fractured specimen after tensile testing revealed breakage of nanotubes along the fracture surface of the composite. A comparison of the MWCNT dispersion in the epoxy samples processed using different methods showed that a combination of MF and PSM processing yields a more homogeneous sample than the PSM or US þ PSM processed samples. Mechanical testing of the composites showed about 15% improvement in the tensile strength of samples processed by the MF þ PSM method over other methods. Thermogravimetric analysis (TGA) results showed a small decrease in the onset degradation temperature for poorly dispersed samples produced by PSM compared with the well-mixed samples (MF þ PSM). These results strongly suggest that the MF þ PSM processing method yield better-dispersed and stronger MWCNT/epoxy composites

    Current density distribution in cylindrical Li-Ion cells during impedance measurements

    Get PDF
    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed
    corecore