4,423 research outputs found
Analysis of magnetic and structural properties in La0.6Sr 0.4MnO3 ferromagnetic particles under the influence of mechanical ball milling effect
We have investigated the magnetic, structural and morphological properties of La0.6Sr0.4MnO3 (LSMO-40) manganite particles, synthesized by solid state reaction method. The resulting LSMO-40 powders were milled in air atmosphere during 3, 6 and 12 hours, by using a planetary ball milling. Samples obtained were characterized by X-ray diffraction, scanning electron microscopy – SEM and magnetization measurements as a function of temperature and magnetic field. A Rietveld analysis was carried on each XRD pattern, and was observed a reduction in crystallite average size (Dv) with increased ball milling time, tM. This is associated with a decrease in particle size. A characteristic rhombohedral crystal structure for the LSMO-40 phase was identified (space group R3C), independent of the milling time of the powders. However, from SEM microstructure was observed more homogeneity in the grain distribution by milling process. The results of magnetic characterization, showed that samples with higher tM (smaller grain size), presented the lowest value of the saturation magnetization, which is attributed to surface effects that induce magnetically disordered states with decreasing particle sizes. This magnetic anisotropy surface is evidenced also on the changes of coercive fields, HC, measured at low temperatures, which increased with increasing tM
Dielectric screening in extended systems using the self-consistent Sternheimer equation and localized basis sets
We develop a first-principles computational method for investigating the
dielectric screening in extended systems using the self-consistent Sternheimer
equation and localized non-orthogonal basis sets. Our approach does not require
the explicit calculation of unoccupied electronic states, only uses two-center
integrals, and has a theoretical scaling of order O(N^3). We demonstrate this
method by comparing our calculations for silicon, germanium, diamond, and LiCl
with reference planewaves calculations. We show that accuracy comparable to
planewaves calculations can be achieved via a systematic optimization of the
basis set.Comment: 6 pages, 3 figure
Membership and Multiplicity among Very Low-Mass Stars and Brown Dwarfs in the Pleiades Cluster
We present near-infrared photometry and optical spectroscopy of very low-mass
stars and brown dwarf candidates in the Pleiades open cluster. The membership
status of these objects is assessed. Eight objects out of 45 appear to be
non-members. A search for companions among 34 very low-mass Pleiades members
(M0.09 M) in high-spatial resolution images obtained with the
Hubble Space Telescope and the adaptive optics system of the
Canada-France-Hawaii telescope produced no resolved binaries with separations
larger than 0.2 arcsec (a ~ 27 AU; P ~ 444 years). Nevertheless, we find
evidence for a binary sequence in the color-magnitude diagrams, in agreement
with the results of Steele & Jameson (1995) for higher mass stars. We compare
the multiplicity statistics of the Pleiades very low-mass stars and brown
dwarfs with that of G and K-type main sequence stars in the solar neighborhood
(Duquennoy & Mayor 1991). We find that there is some evidence for a deficiency
of wide binary systems (separation >27 AU) among the Pleiades very low-mass
members. We briefly discuss how this result can fit with current scenarios of
brown dwarf formation. We correct the Pleiades substellar mass function for the
contamination of cluster non-members found in this work. We find a
contamination level of 33% among the brown dwarf candidates identified by
Bouvier et al. (1998). Assuming a power law IMF across the substellar boundary,
we find a slope dN/dM ~ M^{-0.53}, implying that the number of objects per mass
bin is still rising but the contribution to the total mass of the cluster is
declining in the brown dwarf regime.Comment: to be published in The Astrophysical Journa
Scanning tunneling spectroscopy of layers of superconducting 2H-TaSe: Evidence for a zero bias anomaly in single layers
We report a characterization of surfaces of the dichalcogenide TaSe using
scanning tunneling microscopy and spectroscopy (STM/S) at 150 mK. When the top
layer has the 2H structure and the layer immediately below the 1T structure, we
find a singular spatial dependence of the tunneling conductance below 1 K,
changing from a zero bias peak on top of Se atoms to a gap in between Se atoms.
The zero bias peak is additionally modulated by the commensurate charge density wave of 2H-TaSe. Multilayers of 2H-TaSe show a
spatially homogeneous superconducting gap with a critical temperature also of 1
K. We discuss possible origins for the peculiar tunneling conductance in single
layers.Comment: 10 pages, 10 figure
The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects
We investigate the mass function in the substellar domain down to a few
Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d =
360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of
790 arcmin^2 close to the cluster centre. This survey was complemented with an
infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using
colour-magnitude diagrams, we have selected 49 candidate cluster members in the
magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0
mum and previously known spectral features of youth, 30 objects are bona fide
cluster members. Four are first identified from our optical-near infrared data.
Eleven have most probable masses below the deuterium burning limit and are
classified as planetary-mass object candidates. The slope of the substellar
mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M
< 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects
form via fragmentation, may lie below 0.006 Msol. The frequency of sigma
Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity
in the mass function and in the frequency of discs suggests that very low-mass
stars and substellar objects, even below the deuterium-burning mass limit, may
share the same formation mechanism.Comment: Accepted for publication in A&A (12/04/2007). It has not been edited
for language ye
- …