5 research outputs found
Molecular motor with a build-in escapement device
We study dynamics of a classical particle in a one-dimensional potential,
which is composed of two periodic components, that are time-independent, have
equal amplitudes and periodicities. One of them is externally driven by a
random force and thus performs a diffusive-type motion with respect to the
other. We demonstrate that here, under certain conditions, the particle may
move unidirectionally with a constant velocity, despite the fact that the
random force averages out to zero. We show that the physical mechanism
underlying such a phenomenon resembles the work of an escapement-type device in
watches; upon reaching certain level, random fluctuations exercise a locking
function creating the points of irreversibility in particle's trajectories such
that the particle gets uncompensated displacements. Repeated (randomly) in each
cycle, this process ultimately results in a random ballistic-type motion. In
the overdamped limit, we work out simple analytical estimates for the
particle's terminal velocity. Our analytical results are in a very good
agreement with the Monte Carlo data.Comment: 7 pages, 4 figure
Saltatory drift in a randomly driven two-wave potential
Dynamics of a classical particle in a one-dimensional, randomly driven
potential is analysed both analytically and numerically. The potential
considered here is composed of two identical spatially-periodic saw-tooth-like
components, one of which is externally driven by a random force. We show that
under certain conditions the particle may travel against the averaged external
force performing a saltatory unidirectional drift with a constant velocity.
Such a behavior persists also in situations when the external force averages
out to zero. We demonstrate that the physics behind this phenomenon stems from
a particular behavior of fluctuations in random force: upon reaching a certain
level, random fluctuations exercise a locking function creating points of
irreversibility which the particle can not overpass. Repeated (randomly) in
each cycle, this results in a saltatory unidirectional drift. This mechanism
resembles the work of an escapement-type device in watches. Considering the
overdamped limit, we propose simple analytical estimates for the particle's
terminal velocity.Comment: 14 pages, 6 figures; appearing in Journal of Physics: Condensed
Matter, special issue on Molecular Motors and Frictio