158 research outputs found

    The effect of titanium (Ti) and titanium 500 (ti 500) implantation on the activation of rat macrophage subgroups

    Full text link
    © 2019, Editorial Ciencias Medicas. All rights reserved. Introduction: Nowadays it is necessary to make new researches in order to solve the problems related to the prolongation of life and related health problems, especially fractures and spinal degeneration. The biocompatibility, mechanical compatibility, morphological compatibility and osseointegration properties of the implant material are very important. In order to prevent unwanted side effects in the use of biomaterials, new strategies need to be developed. Implants, where they will be implanted and their functions will vary according to the characteristics of the material used. The most commonly used metallic materials are 316L stainless steel, Co-Cr alloys and Ti alloys. Objective: To demostrate the effect of Titanium and Titanium 500 on activation of macropages Material and Methods: Our research was performed in the Laboratory of Cytokines and Receptors in the Department of Physiology of Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa. Our research has been approved by the Animal Experiments Local Ethics Committee of Bezmialem Vakif University (Approval Number:2017/218). In order to control the rejection of the patient with specific inflammation caused by titanium implantation, we analyzed the first triggered cells of the innate immun system, especially macrophages and sub-groups (M1, M2a, M2b, M2c), by implanting Titanium and Titanium 500 into the spinal region in Wistar albino male rats. According to the Power Analysis statistic program, 3 different groups of Wistar albino species male rats with a weight of 250 - 300 grams and 10-12 weeks of age were formed. Group I (n: 8, Sham group (Control)), Group II (n: 8, Titanium alloy), Group III (n: 8, Titanium 500). No implant was used in Group I (sham group). Only surgical stress was applied to the rats and they were closed again. In Group II and Group III, the rods were placed on the lamina. Peripheral blood samples were collected on the 1st, 3rd, 5th and 7th days following the implantation phase. M1 macrophages (CCL3, CCL4, CXCL9, IL-23), M2a macrophages (CD163, CD206), M2b macrophages (CCL1), M2c macrophage (SLAM) markers were examined by ELISA (Enzyme-Linked ImmunoSorbent Assay) method. Groups were compared with one-way analysis of variance (ANOVA). For the paired comparison of significant variables, a statistically significant difference (HSD) test was used for Tukey's homogeneous variance variables. Statistical significance was set at p < 0.05. Results and Conclusions: We believe that our analysis results will be helpful in the control, prevention, immunological and therapeutic methods of the reactions (inflammation, rejection, etc.) that may occur in patients who are implanted with Titanium (Ti) and Titanium 500 (Ti 500) implants (spinal, orthopedic, dental etc.)

    Low temperature atomic layer deposited ZnO photo thin film transistors

    Get PDF
    Cataloged from PDF version of article.ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80°C; Ion/Ioff ratio is extracted as 7.8 × 109 and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80°C. ID-VGS characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias. © 2014 American Vacuum Society

    Modular Superconducting Qubit Architecture with a Multi-chip Tunable Coupler

    Full text link
    We use a floating tunable coupler to mediate interactions between qubits on separate chips to build a modular architecture. We demonstrate three different designs of multi-chip tunable couplers using vacuum gap capacitors or superconducting indium bump bonds to connect the coupler to a microwave line on a common substrate and then connect to the qubit on the next chip. We show that the zero-coupling condition between qubits on separate chips can be achieved in each design and that the relaxation rates for the coupler and qubits are not noticeably affected by the extra circuit elements. Finally, we demonstrate two-qubit gate operations with fidelity at the same level as qubits with a tunable coupler on a single chip. Using one or more indium bonds does not degrade qubit coherence or impact the performance of two-qubit gates.Comment: 9 pages, 6 figure

    Lack of significant association of an insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene with tropical calcific pancreatitis

    Get PDF
    BACKGROUND: The genetic basis of tropical calcific pancreatitis (TCP) is different and is explained by mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. However, mutated SPINK1 does not account for the disease in all the patients, neither does it explain the phenotypic heterogeneity between TCP and fibro-calculous pancreatic diabetes (FCPD). Recent studies suggest a crucial role for pancreatic renin-angiotensin system during chronic hypoxia in acute pancreatitis and for angiotensin converting enzyme (ACE) inhibitors in reducing pancreatic fibrosis in experimental models. We investigated the association of ACE gene insertion/deletion (I/D) polymorphism in TCP patients using a case-control approach. Since SPINK1 mutations are proposed a modifier role, we also investigated its interaction with the ACE gene variant. METHODS: We analyzed the I/D polymorphism in the ACE gene (g.11417_11704del287) in 171 subjects comprising 91 TCP and 80 FCPD patients and compared the allelic and genotypic frequency in them with 99 healthy ethnically matched control subjects. RESULTS: We found 46% and 21% of TCP patients, 56% and 19.6% of FCPD patients and 54.5% and 19.2% of the healthy controls carrying the I/D and D/D genotypes respectively (P>0.05). No significant difference in the clinical picture was observed between patients with and without the del allele at the ACE in/del polymorphism in both categories. No association was observed with the presence or absence of N34S SPINK1 mutation in these patients. CONCLUSION: We conclude that the ACE insertion/deletion variant does not show any significant association with the pathogenesis, fibrosis and progression of tropical calcific pancreatitis and the fibro-calculous pancreatic diabetes

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF
    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges

    Does the Integration of Haptic and Visual Cues Reduce the Effect of a Biased Visual Reference Frame on the Subjective Head Orientation?

    Get PDF
    The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect.Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks

    Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia

    Get PDF
    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies

    Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)

    Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

    Get PDF
    Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n similar to 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
    corecore