62 research outputs found
Microglial peri-somatic abutments classify two novel types of GABAergic neuron in the inferior colliculus
© 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd Emerging evidence suggests functional roles for microglia in the healthy, mature nervous system. However, we know little of the cellular density and ramified morphology of microglia in sensory systems, and even less of their inter-relationship with inhibitory neurons. We therefore conducted fluorescent multi-channel immunohistochemistry and confocal microscopy in guinea pigs of both sexes for Iba1, GAD67, GFAP, calbindin, and calretinin. We explored these markers in the inferior colliculi (IC), which contain sub-regions specialized for different aspects of auditory processing. First, we found that while the density of Iba1+ somata is similar throughout the IC parenchyma, Iba1+ microglia in dorsal cortex are significantly more ramified than those in the central nucleus or lateral cortex. Conversely, Iba1+ ramifications in ventral central nucleus, a region with the highest density of GAD67+ (putative GABAergic) neurons in IC, are longer with fewer ramifications. Second, we observed extensive abutments of ramified Iba1+ processes onto GAD67+ somata throughout the whole IC and developed novel measures to quantify these. Cluster analyses revealed two novel sub-types of GAD67+ neuron that differ in the quantity of Iba1+ somatic abutments they receive. Unlike previous classification schemes for GAD67+ neurons in IC, these clusters are not related to GAD67+ soma size. Taken together, these data demonstrate that microglial ramifications vary between IC sub-regions in the healthy, adult IC, possibly related to the ongoing demands of their niche. Furthermore, Iba1+ abutments onto neuronal somata are a novel means by which GAD67+ neurons can be classified
Commissural gain control enhances the midbrain representation of sound location
© 2016 the authors. Accurate localization of sound sources is essential for survival behavior in many species. The inferior colliculi (ICs) are the first point in the auditory pathway where cues used to locate sounds, ie, interaural time differences (ITDs), interaural level differences (ILDs), and pinna spectral cues, are all represented in thesamelocation. These cues are first extracted separatelyoneach side of the midline in brainstem nuclei that project to the ICs. Because of this segregation, each IC predominantly represents stimuli in the contralateral hemifield. We tested the hypothesis that commissural connections between the ICs mediate gain control that enhances sound localization acuity. We recorded IC neurons sensitive to either ITDs or ILDs in anesthetized guinea pig, before, during, and following recovery from deactivation of the contralateral IC by cryoloop cooling or microdialysis of procaine.Duringdeactivation, responseswererescaledbydivisive gain changeandadditive shifts,whichreduced the dynamic range of ITD and ILD response functions and the ability of neurons to signal changes in sound location. These data suggest that each IC exerts multiplicative gain control and subtractive shifts over the other IC that enhances the neural representation of sound location. Furthermore, this gain control operates in a similar manner on both ITD- and ILD-sensitive neurons, suggesting a shared mechanism operates across localization cues. Our findings reveal a novel dependence of sound localization on commissural processing. Significance Statement Sound localization, a fundamental process in hearing, is dependent on bilateral computations in the brainstem. How this information is transmitted from the brainstem to the auditory cortex, through several stages of processing, without loss of signal fidelity, is not clear.Weshow that the ability of neurons in the auditory midbrain to encode azimuthal sound location is dependent on gain control mediated by the commissure of the inferior colliculi. This finding demonstrates that commissural processing between homologous auditory nuclei, on either side of the midline, enhances the precision of sound localization
Deactivation of the inferior colliculus by cooling demonstrates intercollicular modulation of neuronal activity
The auditory pathways coursing through the brainstem are organized bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC). Anatomical studies have revealed that these fibers make reciprocal connections which follow the tonotopic organization of the inferior colliculus (IC), and that the commissure contains both excitatory and, albeit fewer, inhibitory fibers. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetized guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs) before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20◦C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ∼8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signaling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other
Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: A collaborative multi-modal study
Mouse models of Alzheimer s disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-Adults (6 months (m)) to mid-(12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-Type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A) and [18F]ASEM (7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, A, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected A accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. A plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to A plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the A plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-Acetyl-Aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and-31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD
Depressive symptom trajectories among girls in the juvenile justice system: 24-month outcomes of an RCT of Multidimensional Treatment Foster Care
Youth depression is a significant and growing international public health problem. Youth who engage in high levels of delinquency are at particularly high risk for developing problems with depression. The present study examined the impact of a behavioral intervention designed to reduce delinquency (Multidimensional Treatment Foster Care; MTFC) compared to a group care intervention (GC; i.e., services as usual) on trajectories of depressive symptoms among adolescent girls in the juvenile justice system. MTFC has documented effects on preventing girls' recidivism, but its effects on preventing the normative rise in girls' depressive symptoms across adolescence have not been examined. This indicated prevention sample included 166 girls (13-17 years at T1) who had at least one criminal referral in the past 12 months and who were mandated to out-of-home care; girls were randomized to MTFC or GC. Intent-to-treat analyses examined the main effects of MTFC on depression symptoms and clinical cut-offs, and whether benefits were greatest for girls most at risk. Depressive symptom trajectories were specified in hierarchical linear growth models over a 2 year period using five waves of data at 6 month intervals. Depression clinical cut-off scores were specified as nonlinear probability growth models. Results showed significantly greater rates of deceleration for girls in MTFC versus GC for depressive symptoms and for clinical cut-off scores. The MTFC intervention also showed greater benefits for girls with higher levels of initial depressive symptoms. Possible mechanisms of effect are discussed, given MTFC's effectiveness on targeted and nontargeted outcomes. © 2013 Society for Prevention Research
Integrated knowledge translation in population health intervention research: a case study of implementation and outcomes from a school-based project.
BACKGROUND: Integrated knowledge translation (IKT) is encouraged in population health intervention research (PHIR) to ensure the co-production of policy-relevant research, yet there is little published literature that reports its implementation and outcomes. The purpose of this study was to describe and evaluate the IKT approach used in a school-based PHIR project to understand how the research informed policy and practice and identify what influenced the IKT process. METHODS: A case study approach was used to provide an in-depth description of the IKT process and understand the co-production and application of research evidence. Data were collected through document review, a survey with all elementary school principals in the school board (n = 18) following dissemination of School Reports and interviews with the IKT research team (including two researchers and three knowledge users). RESULTS: Approximately half of the principals reported reading their School Report (52%) and almost all of these principals attributed the partial or full adoption, or implementation, of a new practice as a result of using the information (89%). Key themes related to the IKT process emerged across the interviews, including supportive relationships, role clarity, competing priorities and the complexities of population health interventions. CONCLUSIONS: The findings suggest that, while IKT can support policy and practice, it can be challenging to maintain engagement due to differing priorities and role ambiguity. Additional recognition, investment and research would enable better implementation of the approach, thereby bridging the gap between research, policy and practice
The Causal Cascade to Multiple Sclerosis: A Model for MS Pathogenesis
BACKGROUND: MS pathogenesis seems to involve both genetic susceptibility and environmental risk factors. Three sequential factors are implicated in the environmental risk. The first acts near birth, the second acts during childhood, and the third acts long thereafter. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem well suited to the first two environmental events. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical Model for MS pathogenesis is developed, incorporating these environmental and genetic factors into a causal scheme that can explain some of the recent changes in MS-epidemiology (e.g., increasing disease prevalence, a changing sex-ratio, and regional variations in monozygotic twin concordance rates). CONCLUSIONS/SIGNIFICANCE: This Model suggests that genetic susceptibility is overwhelmingly the most important determinant of MS pathogenesis. Indeed, over 99% of individuals seem genetically incapable of developing MS, regardless of what environmental exposures they experience. Nevertheless, the contribution of specific genes to MS-susceptibility seems only modest. Thus, despite HLA DRB1*1501 being the most consistently identified genetic marker of MS-susceptibility (being present in over 50% of northern MS patient populations), only about 1% of individuals with this allele are even genetically susceptible to getting MS. Moreover, because genetic susceptibility seems so similar throughout North America and Europe, environmental differences principally determine the regional variations in disease characteristics. Additionally, despite 75% of MS-patients being women, men are 60% more likely to be genetically-susceptible than women. Also, men develop MS at lower levels of environmental exposure than women. Nevertheless, women are more responsive to the recent changes in environmental-exposure (whatever these have been). This explains both the changing sex-ratio and the increasing disease prevalence (which has increased by a minimum of 32% in Canada over the past 35 years). As noted, environmental risk seems to result from three sequential components of environmental exposure. The potential importance of this Model for MS pathogenesis is that, if correct, a therapeutic strategy, designed to interrupt one or more of these sequential factors, has the potential to markedly reduce or eliminate disease prevalence in the future
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis
Objectives
The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this.
Methods
In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death.
Results
Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants).
Conclusions
The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages
- …