16 research outputs found
Equipo mecánico para la cosecha de tunas
México es el mayor productor y consumidor de tunas en el mundo, donde alrededor 20,000 pequeños productores cultivan nopal tunero en una extensión de aproximadamente 74,500 ha
Descripción de la estructura de soporte para el cultivo de chayote (Sechium edule (Jacq). Swartz), y propuesta de un nuevo modelo
Objective: Verify the tapanco’s structural strength when producing chayote, which gives footsteps to innovate for an original installation that should accomplish functionality and ease handling for crop management. It should include a design for a unique pole for substituting the wood’s poles.
Design/methodology/closeness: Review construction stages, the required items and processes for raising the tapanco. Look into early designs, which are a copy without major changes from close by installations. Identify those challenging areas according to design and structural strength. Formulate innovations on the construction and upright support units.
Results: Stability of traditional construction is granted to the entire outer limits line. A modular construction is grouped by a succession of small modules; their minimum size should be able to cover a single chayote’s plant, capable of resisting a volume of foliage generated from a sole plant and its potential production of fruits.
Constraints on this study/breakouts: The alternative support pole has been designed and when manufactured it should profile just one piece. A production factory that handles polymers is making a feasible assessment to manufacture the poles and its final cost.
Findings/conclusions: A modular structure is ease to assemble; load is distributed into segments, stability is not affected and the production plot can be enlarged by bringing together one or several modules, just bordering an origin module and size from an irregular land is optimized. Benefits of modular tapanco are associated to using the novel support pole.Objetivo: Validar la resistencia de estructural del “tapanco” para producir chayote, que oriente en innovar en una instalación modelo, que ofrezca una mayor funcionalidad y operatividad del cultivo, que incluya el diseño alternativo de un poste que sustituya a los postes de madera.
Diseño/metodología/aproximación: Revisar las etapas, insumos requeridos y los procesos para erigir el “tapanco”. Escudriñar sobre su diseño base; que es una copia sin modificaciones significativas de instalaciones vecinas. Delimitar áreas de impacto en función de su diseño y su resistencia estructural. Formular innovaciones en la construcción y unidades de apuntalamiento.
Resultados: La estabilidad de la construcción tradicional está comprometida sobre toda la sección perimetral. La construcción modular está configurada por una serie de módulos pequeños, con un tamaño mínimo para abarcar una planta de chayote, que soporte el volumen del follaje que logra generar cada planta y de su producción potencial de frutos.
Limitaciones del estudio/implicaciones: El poste de soporte alterno ha sido diseñado para ser fabricado en una sola pieza. Una empresa que transforma productos de polímero esta valorando la viabilidad para elaborar el poste y su costo probable.
Hallazgos/conclusiones: La estructura modular es sencilla de emplazar, distribuye la carga por secciones, sin afectar su estabilidad y la superficie de producción puede ampliarse al ensamblar uno o varios módulos junto al adyacente inmediato y se optimiza la configuración irregular del terreno. Los beneficios del tapanco modular están asociados con la utilización del poste de soporte alternativo
Artificial seed viability of sugarcane (Saccharum officinarum L. cv. Mex 69-290) under conditions of Huimanguillo-Tabasco, Mexico
To develop an artificial seed of sugar cane using sodium alginate and starch, it was possible to bring shoots resistance and protection in addition to a germination of 100 and 84%, respectively. In order to improve the technology of the artificial seed of sugarcane, two experiments were carried out to evaluate different polymer concentrations (sodium alginate and starch) and determine the maximum storage time for the artificial seed, using a completely random design, and a factorial 5x5 completely random design. The study variables were as follows: physical condition, rheological, mechanical test and seedling emergence. The results obtained have allowed to us to conclude that the best physical condition, resistance and seedling emergence, were obtained with 2% (w/v) sodium alginate and 15% (w/v) starch, corroborating that the initially proposed encapsulation is reliable for the artificial seed elaboration. The seed viability at the fifth day of elaboration was the best choice with a seedling emergence of 100 % at the 30 days of planting. Therefore, artificial seed can only be stored for five days to ensure a 100% seed germination.To develop an artificial seed of sugar cane using sodium alginate and starch, it was possible to bring shoots resistance and protection in addition to a germination of 100 and 84%, respectively. In order to improve the technology of the artificial seed of sugarcane, two experiments were carried out to evaluate different polymer concentrations (sodium alginate and starch) and determine the maximum storage time for the artificial seed, using a completely random design, and a factorial 5x5 completely random design. The study variables were as follows: physical condition, rheological, mechanical test and seedling emergence. The results obtained have allowed to us to conclude that the best physical condition, resistance and seedling emergence, were obtained with 2% (w/v) sodium alginate and 15% (w/v) starch, corroborating that the initially proposed encapsulation is reliable for the artificial seed elaboration. The seed viability at the fifth day of elaboration was the best choice with a seedling emergence of 100 % at the 30 days of planting. Therefore, artificial seed can only be stored for five days to ensure a 100% seed germination
Consumption of nitrogen by cultivares of sugar in Tabasco, Mexico
La eficiencia en la toma de nitrógeno por cultivares de caña de azúcar no está relacionada
directamente con los rendimientos de tallos por hectárea. Los objetivos fueron determinar el efecto de la fertilización nitrogenada en la calidad de jugo, rendimiento, consumo de
nitrógeno y rentabilidad. El estudio se realizó en el Ingenio Azsuremex, (Tenosique, Tabasco), durante el ciclo de caña planta 2014/2015, bajo condiciones de cultivo sin riego suplementario en un suelo Cambisol háplico. Se evaluó las dosis de N: 0, 120 y 180 kg.ha-1 en 10 cultivares de caña de azúcar. Los resultados muestran que la dosis alta de N afectó negativamente la calidad del jugo. Se observó una respuesta lineal positiva en el rendimiento, a excepción del cultivar MEX 69-290 que presentó el rendimiento más alto con 120 kg.N.ha-1.
El consumo de N fue diferente entre cultivares y aumentó conforme se incrementó la dosis de N. El índice de eficiencia interna (EI) de utilización del nitrógeno varió de 1,6 a 2,0 kg de N por tonelada de tallo. En cinco de los cultivares evaluados es rentable fertilizar con las dosis de 120 y/o 160 kg.ha-1 de N.Efficiency in taking nitrogen sugarcane cultivars is not directly related yields stems per hectare. The objectives were to determine the effect of nitrogen fertilization on juice quality, performance, nitrogen demand and profitability. The study was conducted in the sugar actory Azsuremex (Tenosique, Tabasco) during the 2014/2015 cycle plant cane, under culture conditions without supplemental irrigation on soil Cambisol haplico.
N rates were evaluated: 0, 120 and 180 kg ha-1 in 10 sugarcane cultivars. The results show that high doses of N adversely affected the quality of the juice. A positive linear response on performance, except MEX 69-290 cultivar presented the highest performance 120 kg.N.ha-1 was observed. N consumption was different between cultivars and increased as the dose of N.
The internal efficiency index (EI) of nitrogen utilization ranged from 1.6 to 2.0 kg N per tons stem increased. In five of the evaluated cultivars is profitable fertilize with doses of 120 and/or 160 kg ha-1 of N.Fil: Salgado García, Sergio.
Colegio de Postgraduados (México). Campus Tabasco.Fil: Izquierdo Hernández, José.
Colegio de Postgraduados (México). Campus Tabasco.Fil: Lagunes Espinoza, Luz del Carmen.
Colegio de Postgraduados (México). Campus Tabasco.Fil: Palma López, David Jesús.
Colegio de Postgraduados (México). Campus Tabasco.Fil: Córdova Sanchez, Samuel.Fil: Ortiz Laurel, Hipólito.Fil: Castelán Estrada, Mepivoseth.
Colegio de Postgraduados (México). Campus Tabasco
Proximal and mineral composition analysis of castilla squash seeds (C. moschata), green pea (P. sativum) and green bean (P. vulgaris) for use in 4.0 Agribusiness
Objective: To determine the proximal and mineral composition analysis of of castilla squash seeds (C. moschata), green pea (P. sativum) and pinto saltillo green bean (P. vulgaris).
Design/methodology/approach: The contents of macronutrients (carbohydrates, fats, crude fiber, protein, and ash) and micronutrients (minerals) of the evaluated species were determined using the AOAC standard procedures, and the quantification of minerals was performed by mass spectrometry with inductively coupled plasma. A variance analysis and means comparison were performed with Tukey’s test (α = 0.05).
Results: The squash seeds with shells contain 291,500 ppm of protein, 417,000 ppm of fat, 66,700 ppm of carbohydrates, 134,000 ppm of crude fiber, 972,319.678 ppm of phosphorus, 3,380.09158 ppm of potassium and 3,183.2744 ppm of magnesium. The whole pea pod has 230,600 ppm of protein, 17,200 ppm of fat, 456,000 ppm of carbohydrates, 220,800 ppm of crude fiber, 5,438.18,991 ppm of phosphorus, 7,349.23753 ppm of potassium and 1,719.56882 ppm of magnesium. The whole green bean pods had a content of protein (185100 ppm), fat (2540 ppm), carbohydrates (377500 ppm), fiber (208000 ppm), phosphorus (6068.44661 ppm), potassium (15626.9991 ppm) and magnesium (17222.16567 ppm)).
Study limitations/implications: Studies on the chemical characteristics of other agroindustrial residues should be carried out.
Findings/conclusions: The foods analyzed have adequate characteristics to satisfy the demands with respect to some macronutrients and micronutrients. They can optimize the availability of nutrients in the generation of natural or synthetic foods that can change the future
Technological status of prickly pear (Opuntia ficus-indica Mill.) fermentation to increase the protein value of its fodder
Objective: To know the state of the art and the technique of the application of the fermentation process to increase the protein value of nopal for forage, at three technological levels.
Design/methodology/approach: The technological parameters were characterized and the level of mechanization of three fermentation equipment used for increase the protein value of nopal for forage.
For the characterization and analysis, a technical description of parameters was carried out to know the technical development and degree of mechanization at each technological level, obtaining quantitative and qualitative indicators from mathematical expressions and equations, to obtain the conceptual technical analysis.
Results: The results of the analysis of parameters according to the quantitative indicators, determine a limited technological level in the fermentation technology, giving the opportunity for technical improvements to the parameters within the fermentation process.
Findings/conclusions: fermentation technology allows significant savings in the use of resources such as: water, soil and fertilizer, and is an alternative for forage production and food security for livestock in the semi-arid of Mexico.Objective: To analyze the state-of-the-art technology and the application of the fermentation process, in order to increase the protein value of prickly pear (Opuntia ficus-indica), as a source of fodder, in three technological levels.
Design/Methodology/Approach: The technological parameters and mechanization level of three fermenters —employed to increase the protein value of prickly pear fodder— were characterized. The conceptual technical analysis was determined through quantitative and qualitative indicators, based on mathematical expressions and equations.
Results: Quantitative indicators showed a fermentation technology with limited efficiency, which provides an opportunity for technical improvements.
Findings/Conclusions: The application of fermentation technology results in significant savings in water, soil, and fertilizer resources. Furthermore, it provides an alternative for fodder production and food security for livestock in the semi-arid region of Mexico
Consumo de nitrógeno por cultivares de caña de azúcar en Tabasco, México
Efficiency in taking nitrogen sugarcane cultivars is not directly related yields stems per hectare. The objectives were to determine the effect of nitrogen fertilization on juice quality, performance, nitrogen demand and profitability. The study was conducted in the sugar factory Azsuremex (Tenosique, Tabasco) during the 2014/2015 cycle plant cane, under culture conditions without supplemental irrigation on soil Cambisol haplico. N rates were evaluated: 0, 120 and 180 kg ha-1 in 10 sugarcane cultivars. The results show that high doses of N adversely affected the quality of the juice. A positive linear response on performance, except MEX 69-290 cultivar presented the highest performance 120 kg.N.ha-1 was observed. N consumption was different between cultivars and increased as the dose of N. The internal efficiency index (EI) of nitrogen utilization ranged from 1.6 to 2.0 kg N per tons stem increased. In five of the evaluated cultivars is profitable fertilize with doses of 120 and/or 160 kg ha-1 of N.La eficiencia en la toma de nitrógeno por cultivares de caña de azúcar no está relacionada directamente con los rendimientos de tallos por hectárea. Los objetivos fueron determinar el efecto de la fertilización nitrogenada en la calidad de jugo, rendimiento, consumo de nitrógeno y rentabilidad. El estudio se realizó en el Ingenio Azsuremex, (Tenosique, Tabasco), durante el ciclo de caña planta 2014/2015, bajo condiciones de cultivo sin riego suplementario en un suelo Cambisol háplico. Se evaluó las dosis de N: 0, 120 y 180 kg.ha-1 en 10 cultivares de caña de azúcar. Los resultados muestran que la dosis alta de N afectó negativamente la calidad del jugo. Se observó una respuesta lineal positiva en el rendimiento, a excepción del cultivar MEX 69-290 que presentó el rendimiento más alto con 120 kg.N.ha-1. El consumo de N fue diferente entre cultivares y aumentó conforme se incrementó la dosis de N. El índice de eficiencia interna (EI) de utilización del nitrógeno varió de 1,6 a 2,0 kg de N por tonelada de tallo. En cinco de los cultivares evaluados es rentable fertilizar con las dosis de 120 y/o 160 kg.ha-1 de N
Combustible biogás en celdas de hidrógeno
Hydrogen cells with a generation capacity up to 10 kW are being tested on small electric energy plants. This is an alternative, viable and competitive power source. Fuel biogas contains methane, dioxide carbon and several other constituents including a number of impurities which could damage hydrogen cells. This work explored the feasibility of generating suitable biogas to be used for these cells, identification of damaging gases and its successful removal and analyzing the technological factors that intervene on the steam reforming process. There is a correlation between formulae for the substrate in the biodigestor and the amount of harmful substances inside biogas. Concentration of biogas has variations up to 15% against time. Since cells are highly susceptible to harmful components, biogas requires an arduous rigorous cleaning and conditioning process; and after that, a reforming in order to upgrade hydrogen content. For reforming of biogas to be used on low temperature hydrogen cells, it requires accurate treatments and more equipment because of its low methane and high CO2 content.Celdas de hidrógeno con una capacidad de hasta 10 kW se ensayan en plantas pequeñas de generación de energía eléctrica. Esta es una fuente motriz alternativa, viable y competitiva. El combustible biogás consiste principalmente de metano y dióxido de carbono y otros compuestos, además de una variedad de impurezas que sin embargo, son dañinas para las celdas. Se exploró la viabilidad de producir un biogás adecuado para utilizarse en las celdas, la identificación de los gases dañinos y su remoción exitosa y el estudio de los parámetros tecnológicos del reformado con vapor. Existe una correlación entre la formulación del sustrato en el biodigestor con la cantidad de gases perjudiciales en el biogás. La concentración del biogás tiene variaciones hasta del 15% con respecto al tiempo. La sensibilidad de las celdas a ciertos compuestos nocivos obliga a someter el biogás a un riguroso proceso de limpieza/acondicionamiento y finalmente a un reformado para lograr un combustible rico en hidrógeno. Para el reformado del biogás hasta lograr una calidad aceptable para utilizarse en las celdas de baja temperatura se requieren tratamientos de limpieza más agresivos y mayor equipamiento cuando se dispone de un biogás con bajo contenido de metano y un alto contenido de CO2
Calculating energy balance for higuerilla (Ricinus communis L.) from field productive stages to energy value for whole plant constituents
Abstract Introduction: Energy balance trial allows to carefully allocating any inputs for field production of the crop as well as, dosing precisely the amount of energy required for each process, thus determining the efficiency when energy transformation inside the crop is required for a certain task. Method: Castor oil plant (Ricinus communis L.) as an energetic crop was field drillet and cultural practices were undertaken for crop growth and at harvest, the whole plant was collected where each constituent was tested for its energy concentration. Thus, to reach for an energy balance calculation; bilological energy figures from higuerilla plant were compared with technical and physical energy application for crop cultivation and processing. Results: Entire energy applied for crop growth is 28% higher that energy obtained from higuerilla plant. Also, biomass of whole castor oil plant except seeds generates twice energy than oil from seeds, so whole crop harvesting has to be promoted. Conclusion: Oil from sedes should de used as biomaterial, since there is a positive balance by 15%.Resumen Introducción: Pruebas de balance de energía permiten redirigir los insumos desde las etapas de producción de un cultivo, e igualmente, precesar la cantidad de energía utilizada para cada proceso y así, verificar la eficiencia al transformar la energía contenida en el cultivo cuando debe cumplir con una función deseada. Método: La planta de higuerilla (Ricinus communis L.) con propósitos de cultivo energético fue sembrada en campo y sometida a procesos de mantenimiento del cultivo y en la cosecha, la planta completa fue colectada para análisis energético, donde cada una de sus partes incluidas las semillas fueron evaluadas en función de su contenido de energía. Así, para determinar el balance de energía; los valores de la energía biológica de la planta fueron comparados con la energía aplicada en cada uno de los procesos técnicos y físicos para la producción del cultivo y en su procesamiento. Resultados: La energía aplicada para producir el cultivo resulta un 28% superior a la energía a obtener de la planta. Asimismo, la biomasa de la planta completa de higuerilla, sin contar las semillas genera el doble de energía comparado con el aceite de las semillas, por lo que, conviene utilizar toda la planta en términos de energía. Conclusión: Es recomendable utilizar el aceite de las seillas como biomaterial, ya que el balance es positivo en un 15%
Análisis comparativo en la calidad de fibra de agave lecheguilla torr., procesada manual y mecánicamente
La industria de fibras duras ha recobrado terreno despues de ser desplazada por los productos plasticos. La fibra de lechuguilla (ixtle) se exporta a paises de Europa, Asia, Norte y Sudamerica. Este material se utiliza para elaborar varios productos de uso industrial como cepillos para pulir metales, relleno de muebles y asientos, tapetes, alfombras, filtros automotrices; al mezclarse con resinas se usa en la fabricacion de puertas, techos, paredes, laminas, estanteria y mobiliario. En este trabajo se evaluo la resistencia a la tension, fineza, elongacion maxima, dano mecanico y coloracion, en la fibra obtenida de la planta de lechuguilla, la cual se proceso mediante los metodos mecanico y manual. Los resultados de los tratamientos (manual y mecanico) se compararon mediante una prueba de t para muestras apareadas, con la finalidad de comparar la calidad de fibra obtenida en cada uno. No se encontraron diferencias (p>0.05) entre tratamientos para la fineza (densidad lineal), resistencia a la tension, elongacion maxima y dano mecanico. Sin embargo, en la coloracion de la fibra existieron diferencias significativas (p.0.05) debido a la cantidad de residuo que presentaba la fibra tallada con la maquina