18 research outputs found

    Cell wall dynamics during apple development and storage involves hemicellulose modifications and related expressed genes

    Get PDF
    Background : Fruit quality depends on a series of biochemical events that modify appearance, flavour and texture throughout fruit development and ripening. Cell wall polysaccharide remodelling largely contributes to the elaboration of fleshy fruit texture. Although several genes and enzymes involved in cell wall polysaccharide biosynthesis and modifications are known, their coordinated activity in these processes is yet to be discovered.Results : Combined transcriptomic and biochemical analyses allowed the identification of putative enzymes and related annotated members of gene families involved in cell wall polysaccharide composition and structural changes during apple fruit growth and ripening. The early development genes were mainly related to cell wall biosynthesis and degradation with a particular target on hemicelluloses. Fine structural evolutions of galactoglucomannan were strongly correlated with mannan synthase, glucanase (GH9) and β-galactosidase gene expression. In contrast, fewer genes related to pectin metabolism and cell expansion (expansin genes) were observed in ripening fruit combined with expected changes in cell wall polysaccharide composition.Conclusions : Hemicelluloses undergo major structural changes particularly during early fruit development. The high number of early expressed β-galactosidase genes questions their function on galactosylated structures during fruit development and storage. Their activity and cell wall substrate remains to be identified. Moreover, new insights into the potential role of peroxidases and transporters, along with cell wall metabolism open the way to further studies on concomitant mechanisms involved in cell wall assembly/disassembly during fruit development and storage

    Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple

    No full text
    International audienceBlue mold, caused by the necrotrophic fungal pathogen Penicillium expansum, causes serious postharvest losses in apple, and threatens human health through production of the potent mycotoxin patulin. Recent studies indicate a quantitative control of resistance against this disease in apple cultivars. A whole genome apple microarray covering 60k transcripts was used to identify gene(s) that appear to be differentially regulated between resistant and susceptible cultivars in P. expansum-infected fruits. A number of potential candidates was encountered among defense- and oxidative stress-related genes, cell wall modification and lignification genes, and genes related to localization and transport. Induction of one cell wall-related gene and three genes involved in the ‘down-stream’ flavonoid biosynthesis pathway, demonstrates the fundamental role of the cell wall as an important barrier, and suggests that fruit flavonoids are involved in the resistance to blue mold. Moreover, exogenous application of the plant hormone methyl jasmonate (MeJA) reduced the symptoms resulting from inoculating apples with P. expansum. This is the first report linking MeJA and activation of cell wall and flavonoid pathway genes to resistance against blue mold in a study comparing different cultivars of domesticated apple. Our results provide an initial categorization of genes that are potentially involved in the resistance mechanism, and should be useful for developing tools for gene marker-assisted breeding of apple cultivars with an improved resistance to blue mold

    Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation

    Get PDF
    Background: Apple fruit mealiness is one of the most important textural problems that results from an undesirable ripening process during storage. This phenotype is characterized by textural deterioration described as soft, grainy and dry fruit. Despite several studies, little is known about mealiness development and the associated molecular events. In this study, we integrated phenotypic, microscopic, transcriptomic and biochemical analyses to gain insights into the molecular basis of mealiness development. [br/]Results: Instrumental texture characterization allowed the refinement of the definition of apple mealiness. In parallel, a new and simple quantitative test to assess this phenotype was developed. Six individuals with contrasting mealiness were selected among a progeny and used to perform a global transcriptome analysis during fruit development and cold storage. Potential candidate genes associated with the initiation of mealiness were identified. Amongst these, the expression profile of an early down-regulated transcript similar to an Arabidopsis thaliana pectin methylesterase gene (AtPME2) matched with mealiness development. In silico analyses of this Malus x domestica PME gene (MdPME2) confirmed its specific pattern compared with all other identified MdPME genes. Protein fusion experiments showed that MdPME2 is secreted into the apoplast in accordance with a possible activity on pectin structure. Further microscopic analysis indicated a progressive loss of cell to cell adhesion in mealy apple fruits. Biochemical analysis revealed specific modifications of pectin residues associated with mealiness, without global changes in the degree of methylesterification of pectins.[br/] Conclusions: These data support the role of PME in cell wall remodelling during apple fruit development and ripening and suggest a local action of these enzymes. Mealiness may partially result from qualitative and spatial variations of pectin microarchitecture rather than quantitative pectin differences, and these changes may occur early in fruit development. The specific MdPME2 gene highlighted in this study could be a good early marker of texture unfavourable trait in apple

    Об устойчивости векторной траекторной задачи с параметрическим принципом оптимальности

    No full text
    The formula of stability radius of a vector linear combinatorial problem is obtained, its principle of optimality defines by a partitioning of partial criteria set into groups with Pareto relation within each group and the jointly-extremal relation between them. = Получена формула радиуса устойчивости векторной линейной комбинаторной задачи, принцип оптимальности которой задается с помощью разбиения множества частных критериев на группы так, что внутри каждой группы действует паретовский принцип, а между группами – совокупно-экстремальный

    Comparison of cell wall chemical evolution during the development of fruits of two contrasting quality from two members of the Rosaceae family: Apple and sweet cherry

    No full text
    Cell wall composition was studied during the development of apple cultivars (14–161/182 days after full bloom, DAA) maintaining firm fruit (Ariane) or evolving to mealy texture (Rome Beauty) when ripe and in sweet cherry cultivars (21/26–70/75 DAA) to assess their skin-cracking susceptibility (tolerant Regina and susceptible Garnet). Pectin sugar composition and hemicellulose fine structure assessed by enzymatic degradation coupled to MALDI-TOF MS analysis were shown to vary markedly between apples and cherries during fruit development. Apple showed decreasing rhamnogalacturonan I (RGI) and increasing homogalacturonan (HG) pectic domain proportions from young to mature fruit. Hemicellulose-cellulose (HC) sugars peaked at the beginning of fruit expansion corresponding to the maximum cell wall content of glucose and mannose. In contrast, HG peaked very early in the cell wall of young developing cherries and remained constant until ripening whereas RGI content continuously increased. HC content decreased very early and remained low in cell walls. Only the low content of mannose and to a lesser extent fucose increased and then slowly decreased from the beginning of the fruit expansion phase. Hemicellulose structural profiling showed strong varietal differences between cherry cultivars. Both apples and cherries demonstrated a peak of glucomannan oligomers produced by β-glucanase hydrolysis of the cell wall at the onset of cell expansion. The different glucomannan contents and related oligomers released from cell walls are discussed with regard to the contribution of glucomannan to cell wall mechanical properties. These hemicellulose features may prove to be early markers of apple mealiness and cherry skin-cracking susceptibility
    corecore