1,722 research outputs found

    The perceptions of consumers aged 18-30 of “lesbian” appeals in advertising

    Get PDF
    In an over-saturated market, advertisements have become more risqué as companies viefor consumer attention and lesbian content in advertising seems to be on the increasein mainstream media. This article attempts to discover whether lesbian content inadvertising elicits positive or negative consumer attitudes towards the advertisementand the brand, and to link these attitudes with the intention to purchase the product.By doing so, marketers will be able to ascertain whether this type of advertising appealis effective or whether it offends consumers and therefore decreases product sales.The study was quantitative in nature and used descriptive research in a field setting. Itwas found that there is a significant correlation between tolerance of homosexuality andacceptance of lesbian content in advertising. In addition, these advertisements attractedattention and interest and were not perceived as particularly immoral, exploitive oroffensive by most of the sample population. In terms of attracting attention and interest,and being memorable to consumers, advertisements containing clear lesbian interactionare more effective than those with lower levels of homoerotic

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Complex Deleterious Interactions Associated with Malic Enzyme May Contribute to Reproductive Isolation in the Copepod Tigriopus californicus

    Get PDF
    Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome

    Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation

    Get PDF
    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean

    Purified native and recombinant human alpha lymphotoxin [tumor necrosis factor (TNF)-beta] induces inflammatory reactions in normal skin

    Full text link
    These studies report findings that demonstrate that human alpha lymphotoxin (LT) induces local, visible, and microscopic inflammatory reactions in normal skin. Skin sites in rabbits, when inoculated with a single injection of native or recombinant human alpha lymphotoxin, demonstrated erythema, swelling, and warmth within 5 hr. Erythema peaked between 24 and 48 hr had resolved by 72 hr. Histologic studies of skin sites injected with native LT revealed polymorphonuclear neutrophil (PMN) infiltration and edema beginning as early as 3 hr posttreatment. Individual skin sites that received three daily injections of native LT exhibited persistent erythema and swelling. Palpable induration was evident 24 hr after the second injection in the series. Histologic examination revealed the presence of many PMNs with associated focal dermal destruction, in the form of microabscesses, and scattered mononuclear cells. In contrast, control materials and recombinant human tumor necrosis factor (TNF-alpha) did not induce visible skin reactions in the rabbit. Several additional controls excluded endotoxin as being the agent responsible for the inflammatory skin reactions observed. The ability of LT to induce inflammation may have a role in its antitumor activity and it may be an important endogenous mediator in other immunologic reactions

    Meiotic Transmission of Drosophila pseudoobscura Chromosomal Arrangements

    Get PDF
    Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    The Bantam microRNA Is Associated with Drosophila Fragile X Mental Retardation Protein and Regulates the Fate of Germline Stem Cells

    Get PDF
    Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs), particularly the bantam miRNA (bantam), are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation

    The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts

    Get PDF
    The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-Îł is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-ÎşB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection

    Frequent Missense and Insertion/Deletion Polymorphisms in the Ovine Shadoo Gene Parallel Species-Specific Variation in PrP

    Get PDF
    BACKGROUND: The cellular prion protein PrP(C) is encoded by the Prnp gene. This protein is expressed in the central nervous system (CNS) and serves as a precursor to the misfolded PrP(Sc) isoform in prion diseases. The prototype prion disease is scrapie in sheep, and whereas Prnp exhibits common missense polymorphisms for V136A, R154H and Q171R in ovine populations, genetic variation in mouse Prnp is limited. Recently the CNS glycoprotein Shadoo (Sho) has been shown to resemble PrP(C) both in a central hydrophobic domain and in activity in a toxicity assay performed in cerebellar neurons. Sho protein levels are reduced in prion infections in rodents. Prompted by these properties of the Sho protein we investigated the extent of natural variation in SPRN. PRINCIPAL FINDINGS: Paralleling the case for ovine versus human and murine PRNP, we failed to detect significant coding polymorphisms that alter the mature Sho protein in a sample of neurologically normal humans, or in diverse strains of mice. However, ovine SPRN exhibited 4 missense mutations and expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats R1-R5 encoding Sho's hydrophobic domain. A Val71Ala polymorphism and polymorphic expansion of wt 67(Ala)(3)Gly70 to 67(Ala)(5)Gly72 reached frequencies of 20%, with other alleles including Delta67-70 and a 67(Ala)(6)Gly73 expansion. Sheep V71, A71, Delta67-70 and 67(Ala)(6)Gly73 SPRN alleles encoded proteins with similar stability and posttranslational processing in transfected neuroblastoma cells. SIGNIFICANCE: Frequent coding polymorphisms are a hallmark of the sheep PRNP gene and our data indicate a similar situation applies to ovine SPRN. Whether a common selection pressure balances diversity at both loci remains to be established
    • …
    corecore