4,947 research outputs found
Turbulence and secondary motions in square duct flow
We study turbulent flows in pressure-driven ducts with square cross-section
through direct numerical simulation in a wide enough range of Reynolds number
to reach flow conditions which are representative of fully developed
turbulence. Numerical simulations are carried out over extremely long
integration times to get adequate convergence of the flow statistics, and
specifically high-fidelity representation of the secondary motions which arise.
The intensity of the latter is found to be in the order of 1-2% of the bulk
velocity, and unaffected by Reynolds number variations. The smallness of the
mean convection terms in the streamwise vorticity equation points to a simple
characterization of the secondary flows, which in the asymptotic high-Re regime
are found to be approximated with good accuracy by eigenfunctions of the
Laplace operator. Despite their effect of redistributing the wall shear stress
along the duct perimeter, we find that secondary motions do not have large
influence on the mean velocity field, which can be characterized with good
accuracy as that resulting from the concurrent effect of four independent flat
walls, each controlling a quarter of the flow domain. As a consequence, we find
that parametrizations based on the hydraulic diameter concept, and
modifications thereof, are successful in predicting the duct friction
coefficient
An observational and numerical case study of a flash sea storm over the Gulf of Genoa
International audienceDuring the night between the 8 and 9 December 2006 the seawall of the Savona harbour (Liguria Region in north west of Italy) was overtopped by waves. In this work the "Savona flash sea storm" has been studied by analyzing the data recorded by meteo-marine observing stations and the data produced by high resolution meteo-marine numerical models. The data show that, due to the presence of a fast moving low pressure system, the event was characterized by a rapid transition and interaction between two different regimes of winds and related sea states. The results of the study suggest that the most damaging dynamics of the event could be correlated to a bi-modal structure of the wave spectrum. Based on this the authors suggest that a deeper study of the spectral structure of sea storms could lead to define new operational forecasting tools for the preventive evaluation of sea storms damaging potential
Cirrus clouds in convective outflow during the HIBISCUS campaign
International audienceLight-weight microlidar measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (22 S, 49 W). Tropical cirrus observations showed high mesoscale variability in optical and microphysical properties. The cirrus clouds were observed throughout the flight between 12 and 15 km height. It was found that the clouds were composed of different layers, characterized by a marked variability in height, thickness and optical properties. Trajectory analysis and mesoscale transport simulations clearly revealed that the clouds had formed in the outflow of a large and persistent convective region, while the observed optical properties and cloud structure variability could be linked to different residence times of convective-processed air in the upper troposphere. Mesoscale simulations were able to reproduce the supersaturation due to recent outflow, while it was necessary to consider the presence of other formation processes than convective hydration for cirrus forming in aged detrained anvils
Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling
A variable delay integrated receiver for differential phase-shift keying optical transmission systems
An integrated variable delay receiver for DPSK optical transmission systems is presented. The device is realized in silicon-on-insulator technology and can be used to detect DPSK signals at any bit-rates between 10 and 15 Gbit/s
A 1 m Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment
The aim of the CYGNO project is the construction and operation of a 1~m
gas TPC for directional dark matter searches and coherent neutrino scattering
measurements, as a prototype toward the 100-1000~m (0.15-1.5 tons) CYGNUS
network of underground experiments. In such a TPC, electrons produced by
dark-matter- or neutrino-induced nuclear recoils will drift toward and will be
multiplied by a three-layer GEM structure, and the light produced in the
avalanche processes will be readout by a sCMOS camera, providing a 2D image of
the event with a resolution of a few hundred micrometers. Photomultipliers will
also provide a simultaneous fast readout of the time profile of the light
production, giving information about the third coordinate and hence allowing a
3D reconstruction of the event, from which the direction of the nuclear recoil
and consequently the direction of the incoming particle can be inferred. Such a
detailed reconstruction of the event topology will also allow a pure and
efficient signal to background discrimination. These two features are the key
to reach and overcome the solar neutrino background that will ultimately limit
non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018
IEEE NSS/MI
Elemental analysis of histological specimens: A method to unmask nano asbestos fibers
There is recent mounting evidence that nanoparticles may have enhanced toxicological potential in comparison to the same material in the bulk form. The aim of this study was to develop a new method for unmask asbestos nanofibers from Formalin-Fixed, Paraffin-Embedded tissue. There is an increasing amount of evidence that nanoparticles may enhance toxicological potential in comparison to the same material in the bulk form. The aim of this study was to develop a new method to unmask asbestos nanofibers from Formalin-Fixed Paraffin-Embedded (FFPE) tissue. For the first time, in this study we applied Energy Dispersive X-ray (EDX) microanalysis through transmission electron microscopy to demonstrate the presence of asbestos nanofibers in histological specimens of patients with possible occupational exposure to asbestos. The diagnostic protocol was applied to 10 randomly selected lung cancer patients with no history of previous asbestos exposure. We detected asbestos nanofibers in close contact with lung cancer cells in two lung cancer patients with previous possible occupational exposure to asbestos. We were also able to identify the specific asbestos iso-type, which in one of the cases was the same rare variety used in the workplace of the affected patient. By contrast, asbestos nanofibers were not detected in lung cancer patients with no history of occupational asbestos exposure. The proposed technique can represent a potential useful tool for linking the disease to previous workplace exposure in uncertain cases. Furthermore, Formalin-Fixed Paraffin-Embedded (FFPE) tissues stored in the pathology departments might be re-evaluated for possible etiological attribution to asbestos in the case of plausible exposure. Since diseases acquired through occupational exposure to asbestos are generally covered by workers' insurance in most countries, the application of the protocol used in this study may have also relevant social and economic implications
- …
