85 research outputs found
Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making
We describe regularized methods for image reconstruction and focus on the
question of hyperparameter and instrument parameter estimation, i.e.
unsupervised and myopic problems. We developed a Bayesian framework that is
based on the \post density for all unknown quantities, given the observations.
This density is explored by a Markov Chain Monte-Carlo sampling technique based
on a Gibbs loop and including a Metropolis-Hastings step. The numerical
evaluation relies on the SPIRE instrument of the Herschel observatory. Using
simulated and real observations, we show that the hyperparameters and
instrument parameters are correctly estimated, which opens up many perspectives
for imaging in astrophysics
Experimental observation of weak non-Markovianity
Non-Markovianity has recently attracted large interest due to significant
advances in its characterization and its exploitation for quantum information
processing. However, up to now, only non-Markovian regimes featuring
environment to system backflow of information (strong non-Markovianity) have
been experimentally simulated. In this work, using an all-optical setup we
simulate and observe the so-called weak non-Markovian dynamics. Through full
process tomography, we experimentally demonstrate that the dynamics of a qubit
can be non-Markovian despite an always increasing correlation between the
system and its environment which, in our case, denotes no information backflow.
We also show the transition from the weak to the strong regime by changing a
single parameter in the environmental state, leading us to a better
understanding of the fundamental features of non-Markovianity.Comment: v2: final versio
Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel
We investigate super-resolution methods for image reconstruction from data
provided by a family of scanning instruments like the Herschel observatory. To
do this, we constructed a model of the instrument that faithfully reflects the
physical reality, accurately taking the acquisition process into account to
explain the data in a reliable manner. The inversion, ie the image
reconstruction process, is based on a linear approach resulting from a
quadratic regularized criterion and numerical optimization tools. The
application concerns the reconstruction of maps for the SPIRE instrument of the
Herschel observatory. The numerical evaluation uses simulated and real data to
compare the standard tool (coaddition) and the proposed method. The inversion
approach is capable to restore spatial frequencies over a bandwidth four times
that possible with coaddition and thus to correctly show details invisible on
standard maps. The approach is also applied to real data with significant
improvement in spatial resolution.Comment: Astronomy & Astrophysic
DATA INVERSION FOR HYPERSPECTRAL OBJECTS IN ASTRONOMY
ABSTRACT We present an original method for reconstruction of hyperspectral objects (two spatial and one spectral dimensions) from data provided by the infrared slit spectrograph on board the Spitzer Space Telescope. The originality of the work lies in the fact that both measurement model and inversion method are tackled in continuous (spatial and spectral) variables. The method is built in a deterministic regularization framework and enable to achieve both deconvolution and over-resolution. Results show that the method is able to evidence spatial structures not detectable by means of conventional methods. The spatial resolution is shown to be improved by a factor 1.5. We discuss our data processing approach for the new generation of infrared to millimeter space observatories launched in 2009 (Herschel and Planck)
Amending entanglement-breaking channels via intermediate unitary operations
We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters
Planck 2013 results. VI. High Frequency Instrument data processing
We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.Ì7 to 4.Ì6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39âÎŒK in the four lowest HFI frequency channels (100â353GHz) and 13 and 14âkJy sr-1 in the 545 and 857âGHz channels. Relative to the 143âGHz channel, these two high frequency channels are calibrated to within 5% and the 353âGHz channel to the percent level. The 100 and 217âGHz channels, which together with the 143âGHz channel determine the high-multipole part of the CMB power spectrum (50 <â < 2500), are calibrated relative to 143âGHz to better than 0.2%
Planck 2013 results. VI. High Frequency Instrument data processing
We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %
Photonic quantum information processing: a review
Photonic quantum technologies represent a promising platform for several
applications, ranging from long-distance communications to the simulation of
complex phenomena. Indeed, the advantages offered by single photons do make
them the candidate of choice for carrying quantum information in a broad
variety of areas with a versatile approach. Furthermore, recent technological
advances are now enabling first concrete applications of photonic quantum
information processing. The goal of this manuscript is to provide the reader
with a comprehensive review of the state of the art in this active field, with
a due balance between theoretical, experimental and technological results. When
more convenient, we will present significant achievements in tables or in
schematic figures, in order to convey a global perspective of the several
horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor
changes and extended bibliograph
- âŠ