23 research outputs found

    Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise

    Get PDF
    The interactions between a prior program of regular exercise and the development of experimental autoimmune encephalomyelitis (EAE)-mediated responses were evaluated. in the exercised EAE mice, although there was no effect on infiltrated cells, the cytokine and derived neurotrophic factor (BDNF) levels were altered, and the clinical score was attenuated. Although, the cytokine levels were decreased in the brain and increased in the spinal cord, BDNF was elevated in both compartments with a tendency of lesser demyelization volume in the spinal cord of the exercised EAE group compared with the unexercised. (C) 2013 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)NIHUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Fisiol & Biofis, Nucleo Neurociencias, BR-31270901 Belo Horizonte, MG, BrazilMinist Educ Brazil, CAPES Fdn, Programa Pos Grad Ciencias Biol Fisiol Farmacol, BR-70040020 Brasilia, DF, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Patol, BR-31270901 Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Dept Biofis, BR-04023062 São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Lab Venenos & Toxinas Anim, BR-31270901 Belo Horizonte, MG, BrazilUniv Miami, Miller Sch Med, Miami Project Cure Paralysis, Miami, FL 33136 USALa Trobe Univ, Dept Biochem, Bundoora, Vic 3086, AustraliaUniversidade Federal de São Paulo, Dept Biofis, BR-04023062 São Paulo, BrazilCAPES: BEX 0020/12-5NIH: NS051709NIH: NS065479FAPEMIG: CBB-APQ-01459-10FAPEMIG: PPM-00200-12Web of Scienc

    Computational Characterization of 3′ Splice Variants in the GFAP Isoform Family

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3′ end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene – it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3′ end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3′ end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences

    Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis

    Get PDF
    The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors

    Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions

    No full text
    Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics

    Efficient distribution of a novel zirconium-89 labeled anti-cd20 antibody following subcutaneous and intravenous administration in control and experimental autoimmune encephalomyelitis-variant mice

    No full text
    Objective: To investigate the imaging and biodistribution of a novel zirconium-89 (89Zr)-labeled mouse anti-cd20 monoclonal antibody (mAb) in control and experimental autoimmune encephalomyelitis (EAE) mice following subcutaneous (s. c.) and intravenous (i.v.) administration. Background: Anti-cd20-mediated B-cell depletion using mAbs is a promising therapy for multiple sclerosis. Recombinant human myelin oligodendrocyte glycoprotein (rhMOG)-induced EAE involves B-cell-mediated inflammation and demyelination in mice. Design/Methods: C57BL/6J mice (n = 39) were EAE-induced using rhMOG. On Day 14 post EAE induction, 89Zr-labeled-anti-cd20 mAb was injected in control and EAE mice in the right lower flank (s.c.) or tail vein (i.v.). Positron emission tomography/computed tomography (PET/CT) imaging and gamma counting (ex vivo) were performed on Days 1, 3, and 7 to quantify tracer accumulation in the major organs, lymphatics, and central nervous system (CNS). A preliminary study was conducted in healthy mice to elucidate full and early kinetics of the tracer that were subsequently applied in the EAE and control mice study. Results: 89Zr-labeled anti-cd20 mAb was effectively absorbed from s.c. and i.v. injection sites and distributed to all major organs in the EAE and control mice. There was a good correlation between in vivo PET/CT data and ex vivo quantification of biodistribution of the tracer. From gamma counting studies, initial tracer uptake within the lymphatic system was found to be higher in the draining lymph nodes (inguinal or subiliac and sciatic) following s.c. vs. i.v. administration; within the CNS a significantly higher tracer uptake was observed at 24 h in the cerebellum, cerebrum, and thoracic spinal cord (p < 0.05 for all) following s.c. vs. i.v. administration. Conclusions: The preclinical data suggest that initial tracer uptake was significantly higher in the draining lymph nodes (subiliac and sciatic) and parts of CNS (the cerebellum and cerebrum) when administered s.c. compared with i.v in EAE mice
    corecore