3,654 research outputs found

    In situ visualization of Ni-Nb bulk metallic glasses phase transition

    Full text link
    We report the results of the Ni-based bulk metallic glass structural evolution and crystallization behavior in situ investigation. The X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam diffraction (NBD), differential scanning calorimetry (DSC), radial distribution function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques were applied to analyze the structure and electronic properties of Ni63.5Nb36.5 glasses before and after crystallization. It was proved that partial surface crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the full sample crystallization. According to our STM measurements the primary crystallization is originally starting with the Ni3Nb phase formation. It was shown that surface crystallization drastically differs from the bulk crystallization due to the possible surface reconstruction. The mechanism of Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to the local metastable (3x3)-Ni(111) surface phase formation. The possibility of different surface nano-structures development by the annealing of the originally glassy alloy in ultra high vacuum at the temperature lower, than the crystallization temperature was shown. The increase of mean square surface roughness parameter Rq while moving from glassy to fully crystallized state can be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested, and the obtained values (7.64 A, 8.08 A) are in good agreement with STM measurements data (8 A-10 A)

    Hybrid MHD/PIC simulation of a metallic gas-puff z pinch implosion

    Full text link
    We present the hybrid MHD/PIC simulations of the time evolution of a bismuth metallic gas-puff z pinch in external axial magnetic field (AMF). Recent experiments with IMRI-5 generator (450 kA, 450 ns) [1] show the certain effect of an axial magnetic field on radiation energy produced during z pinch implosion. In order to perform the numerical simulation of gas puff z pinch a hybrid model was developed. The hybrid model treats the electrons as a massless fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of PIC method. Ion-ion Coulomb collision is considered with the use of MC method. The radiation transfer of bismuth plasma was accounted in the framework of P1 method. The interelectrode gap pumping by plasma of 8 μs 80 kA bismuth arc with the following plasma implosion by 450 kA / 450 ns current pulse in different external AMF was modelled. The obtained results are in a reasonable agreement with the experimental results. © Published under licence by IOP Publishing Ltd.The work was supported by Russian Science Foundation (project No. 16-19-10142)

    Tuning of tunneling current noise spectra singularities by localized states charging

    Full text link
    We report the results of theoretical investigations of tunneling current noise spectra in a wide range of applied bias voltage. Localized states of individual impurity atoms play an important role in tunneling current noise formation. It was found that switching "on" and "off" of Coulomb interaction of conduction electrons with two charged localized states results in power law singularity of low-frequency tunneling current noise spectrum (1/fα1/f^{\alpha}) and also results on high frequency component of tunneling current spectra (singular peaks appear).Comment: 7 pages, 4 figure

    Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    Get PDF
    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    Measurement of J/ψγηcJ/\psi\to\gamma\eta_{\rm c} decay rate and ηc\eta_{\rm c} parameters at KEDR

    Full text link
    Using the inclusive photon spectrum based on a data sample collected at the J/ψJ/\psi peak with the KEDR detector at the VEPP-4M e+ee^+e^- collider, we measured the rate of the radiative decay J/ψγηcJ/\psi\to\gamma\eta_{\rm c} as well as ηc\eta_{\rm c} mass and width. Taking into account an asymmetric photon lineshape we obtained Γγηc0=2.98±0.180.33+0.15\Gamma^0_{\gamma\eta_{\rm c}}=2.98\pm0.18 \phantom{|}^{+0.15}_{-0.33} keV, Mηc=2983.5±1.43.6+1.6M_{\eta_{\rm c}} = 2983.5 \pm 1.4 \phantom{|}^{+1.6}_{-3.6} MeV/c2c^2, Γηc=27.2±3.12.6+5.4\Gamma_{\eta_{\rm c}} = 27.2 \pm 3.1 \phantom{|}^{+5.4}_{-2.6} MeV.Comment: 6 pages, 3 figure
    corecore