41 research outputs found

    An Evaluation of Clouds and Radiation in a Large-Scale Atmospheric Model Using a Cloud Vertical Structure Classification

    Get PDF
    We revisit the concept of the cloud vertical structure (CVS) classes we have previously employed to classify the planet's cloudiness (Oreopoulos et al., 2017). The CVS classification reflects simple combinations of simultaneous cloud occurrence in the three standard layers traditionally used to separate low, middle, and high clouds and was applied to a dataset derived from active lidar and cloud radar observations. This classification is now introduced in an atmospheric global climate model, specifically a version of NASA's GEOS-5, in order to evaluate the realism of its cloudiness and of the radiative effects associated with the various CVS classes. Such classes can be defined in GEOS-5 thanks to a sub column cloud generator paired with the model's radiative transfer algorithm, and their associated radiative effects can be evaluated against observations. We find that the model produces 50% more clear skies than observations in relative terms and produces isolated high clouds that are slightly less frequent than in observations, but optically thicker, yielding excessive planetary and surface cooling. Low clouds are also brighter than in observations, but underestimates of the frequency of occurrence (by ~20% in relative terms) help restore radiative agreement with observations. Overall the model better reproduces the longwave radiative effects of the various CVS classes because cloud vertical location is substantially constrained in the CVS framework

    On the Global Character of Overlap Between Low and High Clouds

    Get PDF
    The global character of overlap between low and high clouds is examined using active satellite sensors. Low-cloud fraction has a strong land-ocean contrast with oceanic values double those over land. Major low-cloud regimes include not only the eastern ocean boundary stratocumulus and shallow cumulus but also those associated with cold air outbreaks downwind of wintertime continents and land stratus over particular geographic areas. Globally, about 30% of low clouds are overlapped by high clouds. The overlap rate exhibits strong spatial variability ranging from higher than 90% in the tropics to less than 5% in subsidence areas and is anticorrelated with subsidence rate and low-cloud fraction. The zonal mean of vertical separation between cloud layers is never smaller than 5 km and its zonal variation closely follows that of tropopause height, implying a tight connection with tropopause dynamics. Possible impacts of cloud overlap on low clouds are discussed

    New Insights About Cloud Vertical Structure from CloudSat and CALIPSO Observations

    Get PDF
    Active cloud observations from A-Trains CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B CLDCLASSLIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major Cloud Vertical Structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap, and provide their global frequency of occurrence. We contrast CVS occurrences between daytime and nighttime, identify ocean and land differences, and examine their seasonal and geographical variations for the dominant CVS classes. In order to evaluate CVS role in the radiation budget, we estimate radiative effects and contributions of the various CVS classes at the solar and thermal infrared part of the spectrum. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of MODIS cloud regimes for spatiotemporally coincident MODIS-Aqua and CloudSat-CALIPSO daytime observations. This analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS regimes, and ultimately confirms previous interpretations of the nature of cloud regimes that did not have the benefit of collocated active observations

    Cloud Regimes as a Tool for Systematic Study of Various Aerosol-Cloud-Precipitation Interactions

    Get PDF
    Systematic changes of clouds and precipitation are notoriously difficult to ascribe to aerosols. This presentation will showcase yet one more attempt to at least credibly detect the signal of aerosol-cloud-precipitation interactions. We surmise that the concept of cloud regimes (CRs) is appropriate to conduct such an investigation. Previous studies focused on what we call here dynamical CRs, and while we continue to adopt those too for our analysis, we have found that a different way of organizing cloud systems, namely via microphysical regimes is also promising. Our analysis relies on MODIS Collection 6 Level-3 data for clouds and aerosols, and TRMM-TMPA data for precipitation. The regimes are derived by applying clustering analysis on MODIS joint histograms, and once each grid cell is assigned a regime, aerosol and precipitation data can be spatiotemporally matched and composited by regime. The composites of various cloud and precipitation variables for high (upper quartile of distribution) and low (lower quartile) aerosol loadings can then be contrasted. We seek evidence of aerosol effects both in regimes with large fractions of deep ice-rich clouds, as well as regimes where low liquid phase clouds dominate. Signals can be seen, especially when the analysis is broken by land-ocean and when additional filters are applied, but there are of course caveats which will be discussed

    Implementation on Landsat Data of a Simple Cloud Mask Algorithm Developed for MODIS Land Bands

    Get PDF
    This letter assesses the performance on Landsat-7 images of a modified version of a cloud masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer (MODIS) images at northern mid-latitudes. While data from recent Landsat missions include measurements at thermal wavelengths, and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in its present form to maintain greater versatility and ease of use. To evaluate the masking algorithm we take advantage of the availability of manual (visual) cloud masks developed at USGS for the collection of Landsat scenes used here. As part of our evaluation we also include the Automated Cloud Cover Assesment (ACCA) algorithm that includes thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions, but no cloud masks. We show that the suggested algorithm can perform about as well as ACCA both in terms of scene cloud fraction and pixel-level cloud identification. Specifically, we find that the algorithm gives an error of 1.3% for the scene cloud fraction of 156 scenes, and a root mean square error of 7.2%, while it agrees with the manual mask for 93% of the pixels, figures very similar to those from ACCA (1.2%, 7.1%, 93.7%)

    The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    Get PDF
    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate

    Observations of Local Positive Low Cloud Feedback Patterns, and Their Role in Internal Variability and Climate Sensitivity

    Get PDF
    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation (AMO), leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback

    Estimating the Direct Radiative Effect of Absorbing Aerosols Overlying Marine Boundary Layer Clouds in the Southeast Atlantic Using MODIS and CALIOP

    Get PDF
    Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals
    corecore