138 research outputs found
Community transmission of multidrug-resistant tuberculosis is associated with activity space overlap in Lima, Peru.
BACKGROUND: Transmission of multidrug-resistant tuberculosis (MDRTB) requires spatial proximity between infectious cases and susceptible persons. We assess activity space overlap among MDRTB cases and community controls to identify potential areas of transmission. METHODS: We enrolled 35 MDRTB cases and 64 TB-free community controls in Lima, Peru. Cases were whole genome sequenced and strain clustering was used as a proxy for transmission. GPS data were gathered from participants over seven days. Kernel density estimation methods were used to construct activity spaces from GPS locations and the utilization distribution overlap index (UDOI) was used to quantify activity space overlap. RESULTS: Activity spaces of controls (median = 35.6 km2, IQR = 25.1-54) were larger than cases (median = 21.3 km2, IQR = 17.9-48.6) (P = 0.02). Activity space overlap was greatest among genetically clustered cases (mean UDOI = 0.63, sd = 0.67) and lowest between cases and controls (mean UDOI = 0.13, sd = 0.28). UDOI was positively associated with genetic similarity of MDRTB strains between case pairs (P < 0.001). The odds of two cases being genetically clustered increased by 22% per 0.10 increase in UDOI (OR = 1.22, CI = 1.09-1.36, P < 0.001). CONCLUSIONS: Activity space overlap is associated with MDRTB clustering. MDRTB transmission may be occurring in small, overlapping activity spaces in community settings. GPS studies may be useful in identifying new areas of MDRTB transmission
A Case-Control Study to Identify Community Venues Associated with Genetically-clustered, Multidrug-resistant Tuberculosis Disease in Lima, Peru.
BACKGROUND: The majority of tuberculosis transmission occurs in community settings. Our primary aim in this study was to assess the association between exposure to community venues and multidrug-resistant (MDR) tuberculosis. Our secondary aim was to describe the social networks of MDR tuberculosis cases and controls. METHODS: We recruited laboratory-confirmed MDR tuberculosis cases and community controls that were matched on age and sex. Whole-genome sequencing was used to identify genetically clustered cases. Venue tracing interviews (nonblinded) were conducted to enumerate community venues frequented by participants. Logistic regression was used to assess the association between MDR tuberculosis and person-time spent in community venues. A location-based social network was constructed, with respondents connected if they reported frequenting the same venue, and an exponential random graph model (ERGM) was fitted to model the network. RESULTS: We enrolled 59 cases and 65 controls. Participants reported 729 unique venues. The mean number of venues reported was similar in both groups (P = .92). Person-time in healthcare venues (adjusted odds ratio [aOR] = 1.67, P = .01), schools (aOR = 1.53, P < .01), and transportation venues (aOR = 1.25, P = .03) was associated with MDR tuberculosis. Healthcare venues, markets, cinemas, and transportation venues were commonly shared among clustered cases. The ERGM indicated significant community segregation between cases and controls. Case networks were more densely connected. CONCLUSIONS: Exposure to healthcare venues, schools, and transportation venues was associated with MDR tuberculosis. Intervention across the segregated network of case venues may be necessary to effectively stem transmission
Scalable and accurate deep learning for electronic health records
Predictive modeling with electronic health record (EHR) data is anticipated
to drive personalized medicine and improve healthcare quality. Constructing
predictive statistical models typically requires extraction of curated
predictor variables from normalized EHR data, a labor-intensive process that
discards the vast majority of information in each patient's record. We propose
a representation of patients' entire, raw EHR records based on the Fast
Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep
learning methods using this representation are capable of accurately predicting
multiple medical events from multiple centers without site-specific data
harmonization. We validated our approach using de-identified EHR data from two
U.S. academic medical centers with 216,221 adult patients hospitalized for at
least 24 hours. In the sequential format we propose, this volume of EHR data
unrolled into a total of 46,864,534,945 data points, including clinical notes.
Deep learning models achieved high accuracy for tasks such as predicting
in-hospital mortality (AUROC across sites 0.93-0.94), 30-day unplanned
readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and
all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90).
These models outperformed state-of-the-art traditional predictive models in all
cases. We also present a case-study of a neural-network attribution system,
which illustrates how clinicians can gain some transparency into the
predictions. We believe that this approach can be used to create accurate and
scalable predictions for a variety of clinical scenarios, complete with
explanations that directly highlight evidence in the patient's chart.Comment: Published version from
https://www.nature.com/articles/s41746-018-0029-
Global, regional, and national burden of tuberculosis, 1990–2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study
Background
Although a preventable and treatable disease, tuberculosis causes more than a million deaths each year. As countries work towards achieving the Sustainable Development Goal (SDG) target to end the tuberculosis epidemic by 2030, robust assessments of the levels and trends of the burden of tuberculosis are crucial to inform policy and programme decision making. We assessed the levels and trends in the fatal and non-fatal burden of tuberculosis by drug resistance and HIV status for 195 countries and territories from 1990 to 2016.
Methods
We analysed 15 943 site-years of vital registration data, 1710 site-years of verbal autopsy data, 764 site-years of sample-based vital registration data, and 361 site-years of mortality surveillance data to estimate mortality due to tuberculosis using the Cause of Death Ensemble model. We analysed all available data sources, including annual case notifications, prevalence surveys, population-based tuberculin surveys, and estimated tuberculosis cause-specific mortality to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how the burden of tuberculosis differed from the burden predicted by the Socio-demographic Index (SDI), a composite indicator of income per capita, average years of schooling, and total fertility rate.
Findings
Globally in 2016, among HIV-negative individuals, the number of incident cases of tuberculosis was 9·02 million (95% uncertainty interval [UI] 8·05–10·16) and the number of tuberculosis deaths was 1·21 million (1·16–1·27). Among HIV-positive individuals, the number of incident cases was 1·40 million (1·01–1·89) and the number of tuberculosis deaths was 0·24 million (0·16–0·31). Globally, among HIV-negative individuals the age-standardised incidence of tuberculosis decreased annually at a slower rate (–1·3% [–1·5 to −1·2]) than mortality did (–4·5% [–5·0 to −4·1]) from 2006 to 2016. Among HIV-positive individuals during the same period, the rate of change in annualised age-standardised incidence was −4·0% (–4·5 to −3·7) and mortality was −8·9% (–9·5 to −8·4). Several regions had higher rates of age-standardised incidence and mortality than expected on the basis of their SDI levels in 2016. For drug-susceptible tuberculosis, the highest observed-to-expected ratios were in southern sub-Saharan Africa (13·7 for incidence and 14·9 for mortality), and the lowest ratios were in high-income North America (0·4 for incidence) and Oceania (0·3 for mortality). For multidrug-resistant tuberculosis, eastern Europe had the highest observed-to-expected ratios (67·3 for incidence and 73·0 for mortality), and high-income North America had the lowest ratios (0·4 for incidence and 0·5 for mortality).
Interpretation
If current trends in tuberculosis incidence continue, few countries are likely to meet the SDG target to end the tuberculosis epidemic by 2030. Progress needs to be accelerated by improving the quality of and access to tuberculosis diagnosis and care, by developing new tools, scaling up interventions to prevent risk factors for tuberculosis, and integrating control programmes for tuberculosis and HIV
Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation
Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the global burden of disease study 2017
© 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings: In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation: Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding: Bill & Melinda Gates Foundation
Mapping 123 million neonatal, infant and child deaths between 2000 and 2017
Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
- …