18 research outputs found

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    Get PDF
    Although tropical forests differ substantially in form and function, they are often represented as a single biome in global change models, hindering understanding of how different tropical forests will respond to environmental change. The response of the tropical forest biome to environmental change is strongly influenced by forest type. Forest types differ based on functional traits and forest structure, which are readily derived from high resolution airborne remotely sensed data. Whether the spatial resolution of emerging satellite-derived hyperspectral data is sufficient to identify different tropical forest types is unclear. Here, we resample airborne remotely sensed forest data at spatial resolutions relevant to satellite remote sensing (30 m) across two sites in Malaysian Borneo. Using principal component and cluster analysis, we derive and map seven forest types. We find ecologically relevant variations in forest type that correspond to substantial differences in carbon stock, growth, and mortality rate. We find leaf mass per area and canopy phosphorus are critical traits for distinguishing forest type. Our findings highlight the importance of these parameters for accurately mapping tropical forest types using space borne observations

    Political shifts and changing forests: Effects of armed conflict on forest conservation in Rwanda

    Get PDF
    Most armed conflicts in recent history occurred in biodiversity hotspots. Yet, studies examining impacts of warfare on forests yield contradictory results. This study provides a theoretical framework articulating different hypothetical relationships between conflict and forest transitions. Landsat TM and ETM+ data were analyzed to examine forest transitions in Rwanda during conflict and post conflict periods. Net trends showed little difference between periods, with a rate of 1.6% annual gain during conflict years, and 2.5% following the conflict. Closer inspection revealed spatially concentrated forest loss during conflict years; 96% occurred in protected areas with the most loss in Gishwati Forest Reserve at a rate of −6.1%. Trends were explored with spatially explicit conflict data that distinguished armed conflict activity from conflict induced settlements. Impacts of conflict on forests in Rwanda appear to be influenced by natural resource use near settlements. Massive migrations of people into settlements during the conflict, who had previously been scattered across the landscape, resulted in a redistribution of pressures. Reduced pressure elsewhere supports this inference. Results underscore the vulnerability of protected areas and the spatial dynamics of forest resource dependence during conflicts. This work demonstrates the value of distinguishing conflict activities to assess their varied environmental effects

    Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills

    No full text
    Oil palm expansion resulted in 2 million hectares (Mha) of forest loss globally in 2000–2010. Despite accounting for 24% (4.5 Mha) of the world’s total oil palm cultivated area, expansion dynamics in sub-Saharan Africa have been overlooked. We show that in Southwest Cameroon, a top producing region of Africa, 67% of oil palm expansion from 2000–2015 occurred at the expense of forest. Contrary to the publicized narrative of industrial-scale expansion, most oil palm expansion and associated deforestation is occurring outside large agro-industrial concessions. Expansion and deforestation carried out by non-industrial producers is occurring near low-efficiency informal mills, unconstrained by the location of highefficiency company-owned mills. These results highlight the key role of a booming informal economic sector in driving rapid land use change. High per capita consumption and rising palm oil demands in sub-Saharan Africa spotlight the need to consider informal economies when identifying regionally relevant sustainability pathways

    Oil palm expansion in Cameroon: Insights into sustainability opportunities and challenges in Africa

    No full text
    Oil palm production expanded 1.2 million hectares in sub-Saharan Africa since 1990, with expansion accelerating in several heavily forested countries since 2000. Despite a narrative of expansion driven by multinational corporations, we provide evidence of a dynamic non-industrial oil palm production sector linked to a burgeoning informal milling enterprise. Surveys were conducted with oil palm farmers in Cameroon (n = 546), the third largest palm oil producer on the continent with the greatest amount of deforestation due to recent expansion, to determine who is expanding into forest. Seventy-three percent of survey respondents reported clearing forest, the magnitude of which was explained by differences in milling strategies and supply chain integration. Large-scale, non-industrial producers played a disproportionate role in deforestation, many of which were engaged in informal supply chains through the use of non-industrial mills. Farms associated with more clearing tended to use high-yielding seedlings. Even the highest yielding farms, however, averaged only 7.7 tons fresh fruit bunches (FFBs) ha−1yr−1, well below the potential 20 tons FFBs ha−1yr−1 yield for Cameroon. We also found a strong relationship between deforestation and land claims. Most farms claimed ownership of their land, although only 5% had official land titles. Conservation challenges in the region arise from land tenure laws that incentivizeforest clearing. This study sheds light on the role of informal supply chains in deforestation and highlights the need for strict implementation and enforcement of land use zoning policies
    corecore