280 research outputs found
Deep SDSS optical spectroscopy of distant halo stars II. Iron, calcium, and magnesium abundances
We analyze a sample of 3,944 low-resolution (R ~ 2000) optical spectra from
the Sloan Digital Sky Survey (SDSS), focusing on stars with effective
temperatures 5800 < Teff < 6300 K, and distances from the Milky Way plane in
excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. We followed
the same methodology as in the previous paper in this series, deriving
atmospheric parameters by chi2 minimization, but this time we obtained the
abundances of individual elements by fitting their associated spectral lines.
Distances were calculated from absolute magnitudes obtained by a statistical
comparison of our stellar parameters with stellar-evolution models. The
observations reveal a decrease in the abundances of iron, calcium, and
magnesium at large distances from the Galactic center. The median abundances
for the halo stars analyzed are fairly constant up to a Galactocentric distance
r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to
significantly lower values at larger distances, consistent with previous
studies. In addition, we examine the [Ca/Fe] and [Mg/Fe] as a function of Fe/H
and Galactocentric distance. Our results show that the most distant parts of
the halo show a steeper variation of the [Ca/Fe] and [Mg/Fe] with iron. We
found that at the range -1.6 < [Fe/H] < -0.4 [Ca/Fe] decreases with distance,
in agreement with earlier results based on local stars. However, the opposite
trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the
halo are more metal-poor than the inner regions, based on in situ observations
of distant stars, agrees with recent results based on inferences from the
kinematics of more local stars, and with predictions of recent galaxy formation
simulations for galaxies similar to the Milky Way
APOGEE Kinematics I: Overview of the Kinematics of the Galactic Bulge as Mapped by APOGEE
We present the stellar kinematics across the Galactic bulge and into the disk
at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the
Milky Way. APOGEE includes extensive coverage of the stellar populations of the
bulge along the mid-plane and near-plane regions. From these data, we have
produced kinematic maps of 10,000 stars across longitudes 0 deg < l < 65 deg,
and primarily across latitudes of |b| < 5 deg in the bulge region. The APOGEE
data reveal that the bulge is cylindrically rotating across all latitudes and
is kinematically hottest at the very centre of the bulge, with the smallest
gradients in both kinematic and chemical space inside the inner-most region
(l,|b|) < (5,5) deg. The results from APOGEE show good agreement with data from
other surveys at higher latitudes and a remarkable similarity to the rotation
and dispersion maps of barred galaxies viewed edge on. The thin bar that is
reported to be present in the inner disk within a narrow latitude range of |b|
< 2 deg appears to have a corresponding signature in [Fe/H] and [alpha/Fe].
Stars with [Fe/H] > -0.5 have dispersion and rotation profiles that are similar
to that of N-body models of boxy/peanut bulges. There is a smooth kinematic
transition from the thin bar and boxy bulge (l,|b|) < (15,12) deg out into the
disk for stars with [Fe/H] > -1.0, and the chemodynamics across (l,b) suggests
the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.Comment: Accepted by ApJ 15 December 201
Deep SDSS optical spectroscopy of distant halo stars I. Atmospheric parameters and stellar metallicity distribution
We analyze a sample of tens of thousands of spectra of halo turnoff stars,
obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS),
to characterize the stellar halo population "in situ" out to a distance of a
few tens of kpc from the Sun. In this paper we describe the derivation of
atmospheric parameters. We also derive the overall stellar metallicity
distribution based on F-type stars observed as flux calibrators for the
Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an
automated method that determines the set of parameters of a model atmosphere
that reproduces each observed spectrum best. We used an optimization algorithm
and evaluate model fluxes by means of interpolation in a precomputed grid. In
our analysis, we account for the spectrograph's varying resolution as a
function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade)
data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP),
except for stars with logg (cgs units) lower than 2.5. An analysis of stars in
the globular cluster M13 reveals a dependence of the inferred metallicity on
surface gravity for stars with logg < 2.5, confirming the systematics
identified in the comparison with the SSPP. We find that our metallicity
estimates are significantly more precise than the SSPP results. We obtain a
halo metallicity distribution that is narrower and more asymmetric than in
previous studies. The lowest gravity stars in our sample, at tens of kpc from
the Sun, indicate a shift of the metallicity distribution to lower abundances,
consistent with what is expected from a dual halo system in the Milky Way.Comment: 10 pages, 5 figures, Table 1 includes model ugriz magnitudes for
stars with different atmospheric parameters in electronic forma
SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence
We present our study on the spatially resolved H_alpha and M_star relation
for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We
show that the star formation rate surface density (Sigma_SFR), derived based on
the H_alpha emissions, is strongly correlated with the M_star surface density
(Sigma_star) on kpc scales for star- forming galaxies and can be directly
connected to the global star-forming sequence. This suggests that the global
main sequence may be a consequence of a more fundamental relation on small
scales. On the other hand, our result suggests that about 20% of quiescent
galaxies in our sample still have star formation activities in the outer region
with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a
tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions,
named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is
consistent with the scenario that LI(N)ER emissions are primarily powered by
the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte
Optically Selected BL Lacertae Candidates from the Sloan Digital Sky Survey Data Release Seven
We present a sample of 723 optically selected BL Lac candidates from the SDSS
DR7 spectroscopic database encompassing 8250 deg^2 of sky; our sample
constitutes one of the largest uniform BL Lac samples yet derived. Each BL Lac
candidate has a high-quality SDSS spectrum from which we determine
spectroscopic redshifts for ~60% of the objects. Redshift lower limits are
estimated for the remaining objects utilizing the lack of host galaxy flux
contamination in their optical spectra; we find that objects lacking
spectroscopic redshifts are likely at systematically higher redshifts.
Approximately 80% of our BL Lac candidates match to a radio source in
FIRST/NVSS, and ~40% match to a ROSAT X-ray source. The homogeneous
multiwavelength coverage allows subdivision of the sample into 637 radio-loud
BL Lac candidates and 86 weak-featured radio-quiet objects. The radio-loud
objects broadly support the standard paradigm unifying BL Lac objects with
beamed radio galaxies. We propose that the majority of the radio-quiet objects
may be lower-redshift (z<2.2) analogs to high-redshift weak line quasars (i.e.,
AGN with unusually anemic broad emission line regions). These would constitute
the largest sample of such objects, being of similar size and complementary in
redshift to the samples of high-redshift weak line quasars previously
discovered by the SDSS. However, some fraction of the weak-featured radio-quiet
objects may instead populate a rare and extreme radio-weak tail of the much
larger radio-loud BL Lac population. Serendipitous discoveries of unusual white
dwarfs, high-redshift weak line quasars, and broad absorption line quasars with
extreme continuum dropoffs blueward of rest-frame 2800 Angstroms are also
briefly described.Comment: 24 pages, 14 figures, 8 tables. Accepted for publication in A
2006 SQ372: A Likely Long-Period Comet from the Inner Oort Cloud
We report the discovery of a minor planet (2006 SQ372) on an orbit with a
perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show
that this is a transient orbit and is unstable on a timescale of 200 Myrs.
Falling near the upper semimajor axis range of the scattered disk and the lower
semimajor axis range of the Oort Cloud, previous membership in either class is
possible. By modeling the production of similar orbits from the Oort Cloud as
well as from the scattered disk, we find that the Oort Cloud produces 16 times
as many objects on SQ372-like orbits as the scattered disk. Given this result,
we believe this to be the most distant long-period comet ever discovered.
Furthermore, our simulation results also indicate that 2000 OO67 has had a
similar dynamical history. Unaffected by the "Jupiter-Saturn Barrier," these
two objects are most likely long-period comets from the inner Oort Cloud
The clustering of intermediate redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey
We measure the quasar two-point correlation function over the redshift range
2.2<z<2.8 using data from the Baryon Oscillation Spectroscopic Survey. We use a
homogeneous subset of the data consisting of 27,129 quasars with spectroscopic
redshifts---by far the largest such sample used for clustering measurements at
these redshifts to date. The sample covers 3,600 square degrees, corresponding
to a comoving volume of 9.7(Gpc/h)^3 assuming a fiducial LambdaCDM cosmology,
and it has a median absolute i-band magnitude of -26, k-corrected to z=2. After
accounting for redshift errors we find that the redshift space correlation
function is fit well by a power-law of slope -2 and amplitude s_0=(9.7\pm
0.5)Mpc/h over the range 3<s<25Mpc/h. The projected correlation function, which
integrates out the effects of peculiar velocities and redshift errors, is fit
well by a power-law of slope -1 and r_0=(8.4\pm 0.6)Mpc/h over the range
4<R<16Mpc/h. There is no evidence for strong luminosity or redshift dependence
to the clustering amplitude, in part because of the limited dynamic range in
our sample. Our results are consistent with, but more precise than, previous
measurements at similar redshifts. Our measurement of the quasar clustering
amplitude implies a bias factor of b~3.5 for our quasar sample. We compare the
data to models to constrain the manner in which quasars occupy dark matter
halos at z~2.4 and infer that such quasars inhabit halos with a characteristic
mass of ~10^{12}Msun/h with a duty cycle for the quasar activity of 1 per
cent.Comment: 20 pages, 18 figures. Minor modifications to match version accepted
by journa
Recommended from our members
The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals
We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.Center for Exoplanets and Habitable WorldsPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSF AST 1006676, AST 1126413National Science FoundationNational Aeronautics and Space Administration NNX-08AE38A, NNX13AB03GAlfred P. Sloan FoundationU.S. Department of Energy Oce of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrosica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversityMcDonald Observator
- …