42 research outputs found

    Fish otoliths from the middle Miocene Pebas Formation of the Peruvian Amazon

    Full text link
    A small assemblage of 22 otoliths was identified from the historical collection of Bluntschli and Peyer gathered in 1912 on the Itaya riverbank at Iquitos, Peru (Amazonia), from the Pebas Formation. The Pebas Mega-Wetland System in western Amazonia during the Miocene represented a unique, albeit short-lived, biotope characterized by a pronounced endemic evolution with gigantism in some vertebrate groups (e.g., turtles, crocodylians). Thus far, fishes have mainly been recorded based on isolated skeletal remains and teeth. Here, we describe the first well-preserved otolith assemblage from the Pebas Formation. This otolith assemblage adds a new facet to the fauna by complementing the skeletal bony fish data, primarily with species of the Sciaenidae and, to a lesser extent, Ariidae and Cichlidae. The sciaenids and ariids indicate that migration must have occurred between the marginal marine environments to the north and the Pebas Wetland System. The otoliths also indicate the likelihood of endemic developments of adapted marine immigrants to the Pebas Wetland System, some of which have become extinct (Pogonias, Umbrina), while others now represent typical South American freshwater fish groups (Plagioscion). Six new species are described based on otoliths, one in the Cichlidae—Cichlasoma bluntschlii n. sp., one in the Ariidae—Cantarius ohei n. sp., and four in the Sciaenidae—Pebasciaena amazoniensis n. gen. et n. sp., Plagioscion peyeri n. sp., Pogonias tetragonus n. sp. and Umbrina pachaula n. sp

    A historical vertebrate collection from the Middle Miocene of the Peruvian Amazon

    Full text link
    The Miocene aquatic and terrestrial fossil record from western Amazonia constitute a clear evidence of the palaeoenvironmental diversity that prevailed in the area, prior to the establishment of the Amazon River drainage. During the Miocene, the region was characterized by a freshwater megawetland basin, influenced by episodic shallow-marine incursions. A fossil vertebrate collection from the middle Miocene strata of the Pebas Formation is here studied and described. This historical collection was recovered in 1912 along the banks of the Itaya River (Iquitos, Peru), during a scientific expedition led by two scientists of the University of Zurich, Hans Bluntschli and Bernhard Peyer. Our findings include a total of 34 taxa, including stingrays, bony fishes, turtles, snakes, crocodylians, and lizards. Fishes are the most abundant group in the assemblage (~ 23 taxa), including the first fossil record of the freshwater serrasalmids Serrasalmus, and Mylossoma, and the hemiodontid Hemiodus for the Pebas system, with the latter representing the first fossil be discovered for the entire Hemiodontidae. The presence of a representative of Colubroidea in the middle Miocene of Iquitos supports the hypothesis of arrival and dispersal of these snakes into South America earlier than previously expected. This fossil assemblage sheds light on the palaeoenvironments, and the geographical/temporal range of several aquatic/terrestrial lineages inhabiting the Amazonian region

    Formation of the Isthmus of Panama

    Get PDF
    The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed manymillions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways,withformationof theIsthmus of Panama sensustricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.Facultad de Ciencias Naturales y Muse

    Otoliths of the Gobiidae from the Neogene of tropical America

    No full text
    Abstract Otoliths are common and diverse in the Neogene of tropical America. Following previous studies of Neogene tropical American otoliths of the lanternfishes (Myctophidae), marine catfishes (Ariidae), croakers (Sciaenidae), and cusk-eels (Ophidiiformes), we describe here the otoliths of the gobies (Gobiidae). The Gobiidae represent the richest marine fish family, with more than 2000 species worldwide and about 250 in America. In the fossil record too they are the species richest family in the Neogene of tropical America. We have investigated otoliths sampled from Ecuador, Pacific and Atlantic Panama, Atlantic Costa Rica, Dominican Republic, Venezuela, and Trinidad, ranging in age from late Early Miocene (late Burdigalian) to late Early Pleistocene (Calabrian). Most of the studied material originates from the collection expeditions of the Panama Paleontology Project (PPP). Our study represents the first comprehensive record of fossil gobies from America, and we recognize 107 species, of which 51 are new to science, 35 are in open nomenclature, and 19 represent species that also live in the region today. Previously, only two fossil otolith-based goby species have been described from the Neogene of tropical America. The dominant gobies in the fossil record of the region are from the Gobiosomatini, particularly of genera living over soft bottoms or in deeper water such as Bollmannia, Microgobius, Antilligobius, and Palatogobius. Another purpose of our study is to provide a first comprehensive account of otoliths of the extant Gobiidae of America, which we consider necessary for an adequate identification and interpretation of the Neogene otoliths. We studied otoliths of 130 extant American gobiid species and figured 106 of them for comparison. We also present a morphological analysis and characterization of the extant otoliths as a basis for the identification of fossil otoliths. Problems that commonly arise with the identification of fossil otoliths and specifically of fossil goby otoliths are addressed and discussed. A comparison of the history of the Gobiidae in tropical America reveals a high percentage of shared species between the Pacific and the Atlantic basins during the Late Miocene (Tortonian and Messinian) from at least 11 to 6 Ma. A recording gap on the Pacific side across the Pliocene allows a comparison again only in the late Early Pleistocene (Calabrian, 1.8 to 0.78 Ma), which shows a complete lack of shared species. These observations support the effective closure of the former Central American Seaway and emersion of the Isthmus of Panama in the intervening time. Groups that today only exist in the East Pacific were also identified in the Miocene and Pliocene of the West Atlantic, and there is also at least one instance of a genus now restricted to the West Atlantic having occurred in the East Pacific as late as the Pleistocene. The evolution of gobies in tropical America and the implications thereof are extensively discussed. Furthermore, observations of fossil gobies in the region are discussed in respect to paleoenvironmental indications and paleobiogeographic aspects

    Contributions on vertebrate paleontology in Venezuela Preface

    Full text link

    An Early Neogene Elasmobranch fauna from the southern Caribbean (Western Venezuela)

    Full text link
    The Cantaure Formation (Burdigalian to ?early Langhian) is located in the Falcón Basin, North Western Venezuela, and includes one of the most diverse Neogene teleostean and benthonic invertebrate faunas in Tropical America. The paleoenvironmental preferences of the members of this fauna, as well as published paleogeographic reconstructions, suggest that the Cantaure Formation was deposited in a highly-productive shallow water environment, associated with coastal upwelling. We documented a paleodiversity of 39 shark and ray species, including 15 previously unreported taxa for Venezuela and six for Tropical America. We performed a bathymetric analysis of the fossil assemblage based on the distribution of closely-related extant chondrichthyan relatives of fossil taxa and discuss the ecological role and stratigraphic significance of the latter. Our results support the hypothesis that the Cantaure Formation was deposited in an insular inner-middle shelf environment. The elasmobranch fauna is characterized by a predominance of benthopelagic sharks with piscivorous feeding preferences (e.g., †Paratodus, Galeorhinus, Hemipristis, Rhizoprionodon, Carcharhinus, Isogomphodon, Negaprion, †Physogaleus and Sphyrna) followed by durophagous/cancritrophic feeders (e.g., Heterodontus, Nebrius, Mustelus, Rhynchobatus, Pristis, Dasyatis, cf. Pteroplatytrygon, cf. Taeniurops, Aetobatus, Aetomylaeus and Rhinoptera). Filter (e.g., Mobula and †Plinthicus), eurytrophic/sarcophagous (e.g., †Carcharocles and Galeocerdo) and teuthitrophic (e.g., Alopias) feeder species were also found. Teeth of Carcharocles megalodon found in Burdigalian sediments of the Cantaure Formation support the presence of this species already in the early Miocene. Some taxa (Nebrius, Carcharhinus cf. C. macloti and Rhynchobatus) are absent from the extant Caribbean and Western Atlantic fauna, but were present in the region before the closure of the Central American Seaway

    Sawfishes and Other Elasmobranch Assemblages from the Mio-Pliocene of the South Caribbean (Urumaco Sequence, Northwestern Venezuela)

    Get PDF
    The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations) are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.). Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats
    corecore