274 research outputs found
Muon spin rotation study of the topological superconductor SrxBi2Se3
We report transverse-field (TF) muon spin rotation experiments on single
crystals of the topological superconductor SrBiSe with nominal
concentrations and ( K). The TF spectra (
mT), measured after cooling to below in field, did not show any
additional damping of the muon precession signal due to the flux line lattice
within the experimental uncertainty. This puts a lower bound on the magnetic
penetration depth m. However, when we induce disorder in
the vortex lattice by changing the magnetic field below a sizeable
damping rate is obtained for . The data provide microscopic
evidence for a superconducting volume fraction of in the
crystal and thus bulk superconductivity.Comment: 6 pages, includes 4 figure
Extended Magnetic Dome Induced by Low Pressures in Superconducting FeSeS
We report muon spin rotation (SR) and magnetization measurements under
pressure on FeSeS with x
.Above GPa we find microscopic coexistence of
superconductivity with an extended dome of long range magnetic order that spans
a pressure range between previously reported separated magnetic phases. The
magnetism initially competes on an atomic scale with the coexisting
superconductivity leading to a local maximum and minimum of the superconducting
. The maximum of corresponds to the onset of
magnetism while the minimum coincides with the pressure of strongest
competition. A shift of the maximum of for a series of single
crystals with x up to 0.14 roughly extrapolates to a putative magnetic and
superconducting state at ambient pressure for x .Comment: 10 pages, 6 figures, including supplemental materia
Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak
The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first
time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion
population exhibits well-localized velocity-space structures which are revealed by means of tomographic
inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that
the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields
arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances
responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a
kinetic description of fast particles in ELM models and may contribute to a better understanding of the
mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de Economía y Competitividad. FIS2015-69362-
- …