3,961 research outputs found

    Not So SuperDense Coding - Deterministic Dense Coding with Partially Entangled States

    Get PDF
    The utilization of a dd-level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of non-maximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the information capacity of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle, is between dd and 2d. In general we show that the alphabet size grows in "steps" with the possible values d,d+1,...,d22 d, d+1, ..., d^2-2 . We also find that states with less entanglement can have greater communication capacity than other more entangled states.Comment: 6 pages, 2 figures, submitted to Phys. Rev.

    Supernarrow spectral peaks near a kinetic phase transition in a driven, nonlinear micromechanical oscillator

    Full text link
    We measure the spectral densities of fluctuations of an underdamped nonlinear micromechanical oscillator. By applying a sufficiently large periodic excitation, two stable dynamical states are obtained within a particular range of driving frequency. White noise is injected into the excitation, allowing the system to overcome the activation barrier and switch between the two states. While the oscillator predominately resides in one of the two states for most excitation frequencies, a narrow range of frequencies exist where the occupations of the two states are approximately equal. At these frequencies, the oscillator undergoes a kinetic phase transition that resembles the phase transition of thermal equilibrium systems. We observe a supernarrow peak in the power spectral densities of fluctuations of the oscillator. This peak is centered at the excitation frequency and arises as a result of noise-induced transitions between the two dynamical states.Comment: 4 pages, 4 figure

    A practical scheme for error control using feedback

    Get PDF
    We describe a scheme for quantum error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols (for example Ahn et. al, PRA, 65, 042301 (2001)), is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit-flips. We also consider implementation in a solid-state quantum computation architecture and estimate the maximal error rate which could be corrected with current technology.Comment: 12 pages, 3 figures. Minor typographic change

    Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom. Application to 1H NMR reversion experiments in nematic liquid crystals

    Get PDF
    An experimental study of NMR spin decoherence in nematic liquid crystals (LC) is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the Irreversible Quantum Decoherence (IQD) in LC, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the IQD of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic IQD. In order to contrast experiment and theory, the theory was adapted to obtain the IQD function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting are analysed in detail within this framework and their effects on the observed signal decay are numerically estimated. It is found that, though these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behavior of the IQD. As unique characteristic of the IQD, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of IQD associated with a quantum open spin system in LC. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibriu

    Common Biases In Business Research

    Get PDF

    Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator

    Full text link
    We have employed a feedback cooling scheme, which combines high-frequency mixing with digital signal processing. The frequency and damping rate of a 2 MHz micromechanical resonator embedded in a dc SQUID are adjusted with the feedback, and active cooling to a temperature of 14.3 mK is demonstrated. This technique can be applied to GHz resonators and allows for flexible control strategies.Comment: To appear in Appl. Phys. Let

    The quantum one-time pad in the presence of an eavesdropper

    Get PDF
    A classical one-time pad allows two parties to send private messages over a public classical channel -- an eavesdropper who intercepts the communication learns nothing about the message. A quantum one-time pad is a shared quantum state which allows two parties to send private messages or private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing about the message. In the classical case, a one-time pad can be created using shared and partially private correlations. Here we consider the quantum case in the presence of an eavesdropper, and find the single letter formula for the rate at which the two parties can send messages using a quantum one-time pad

    Classical information deficit and monotonicity on local operations

    Full text link
    We investigate classical information deficit: a candidate for measure of classical correlations emerging from thermodynamical approach initiated in [Phys. Rev. Lett 89, 180402]. It is defined as a difference between amount of information that can be concentrated by use of LOCC and the information contained in subsystems. We show nonintuitive fact, that one way version of this quantity can increase under local operation, hence it does not possess property required for a good measure of classical correlations. Recently it was shown by Igor Devetak, that regularised version of this quantity is monotonic under LO. In this context, our result implies that regularization plays a role of "monotoniser".Comment: 6 pages, revte

    Thermodynamics with long-range interactions: from Ising models to black-holes

    Get PDF
    New methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are non-extensive, (do not scale with the size of the system). We show how to calculate the degree of non-extensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a {\it local temperatures} and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity, and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black-hole analog. One finds that the analog's temperature and entropy have many properties which are found in black-holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22 pages, 2 figure
    corecore