4 research outputs found

    Pulsar: Design and Simulation Methodology for Dynamic Bandwidth Allocation in Photonic Network-on-Chip Architectures in Heterogeneous Multicore Systems

    Get PDF
    As the computing industry moved toward faster and more energy-efficient solutions, multicore computers proved to be dependable. Soon after, the Network-on-Chip (NoC) paradigm made headway as an effective method of connecting multiple cores on a single chip. These on-chip networks have been used to relay communication between homogeneous and heterogeneous sets of cores and core clusters. However, the variation in bandwidth requirements of heterogeneous systems is often neglected. Therefore, at a given moment, bandwidth may be in excess at one node while it is insufficient at another leading to lower performance and higher energy costs. This work proposes and examines dynamic schemes for the allocation of photonic channels in a Photonic Network-on-Chip (PNoC) as an alternative to their static-provision counterparts and proposes a method of simulating and selecting the characteristics of a dynamic system at the time of design as to achieve maximum system performance in a Photonic Network-on-Chip for a given application type

    Simulation of Human and Artificial Emotion (SHArE)

    Full text link
    The framework for Simulation of Human and Artificial Emotion (SHArE) describes the architecture of emotion in terms of parameters transferable between psychology, neuroscience, and artificial intelligence. These parameters can be defined as abstract concepts or granularized down to the voltage levels of individual neurons. This model enables emotional trajectory design for humans which may lead to novel therapeutic solutions for various mental health concerns. For artificial intelligence, this work provides a compact notation which can be applied to neural networks as a means to observe the emotions and motivations of machines
    corecore