7 research outputs found

    Multiple Sclerosis Detection in Multispectral Magnetic Resonance Images with Principal Components Analysis

    Get PDF
    This paper presents a local feature vector based method for automated Multiple Sclerosis (MS) lesion segmentation of multi spectral MRI data. Twenty datasets from MS patients with FLAIR, T1,T2, MD and FA data with expert annotations are available as training set from the MICCAI 2008 challenge on MS, and 24 test datasets. Our local feature vector method contains neighbourhood voxel intensities, histogram and MS probability atlas information. Principal Component Analysis(PCA) with log-likelihood ratio is used to classify each voxel. MRI suffers from intensity inhomogenities. We try to correct this 'bias field' with 3 methods: a genetic algorithm, edge preserving filtering and atlas based correction. A large observer variability exist between expert classifications, but the similarity scores between model and expert classifications are often lower. Our model gives the best classification results with raw data, because bias correction gives artifacts at the edges and flatten large MS lesions

    Corrigendum: The quest for EEG power band correlation with ICA derived fMRI resting state networks

    Get PDF
    Contains fulltext : 136233.pdf (publisher's version ) (Open Access)[This corrects the article on p. 315 in vol. 7, PMID: 23805098.].2 p

    Electrophysiological correlation patterns of resting state networks in single subjects: A combined EEG-fMRI study

    No full text
    With combined EEG-fMRI a powerful combination of methods was developed in the last decade that seems promising for answering fundamental neuroscientific questions by measuring functional processes of the human brain simultaneously with two complementary modalities. Recently, resting state networks (RSNs), representing brain regions of coherent BOLD fluctuations, raised major interest in the neuroscience community. Since RSNs are reliably found across subjects and reflect task related networks, changes in their characteristics might give insight to neuronal changes or damage, promising a broad range of scientific and clinical applications. The question of how RSNs are linked to electrophysiological signal characteristics becomes relevant in this context. In this combined EEG-fMRI study we investigated the relationship of RSNs and their correlated electrophysiological signals [electrophysiological correlation patterns (ECPs)] using a long (34 min) resting state scan per subject. This allowed us to study ECPs on group as well as on single subject level, and to examine the temporal stability of ECPs within each subject. We found that the correlation patterns obtained on group level show a large inter-subject variability. During the long scan the ECPs within a subject show temporal fluctuations, which we interpret as a result of the complex temporal dynamic of the RSNs

    Electrophysiological correlation patterns of resting state networks in single subjects: a combined EEG-fMRI study

    Get PDF
    Item does not contain fulltext18 oktober 201

    An investigation into the functional and structural connectivity of the Default Mode Network

    Get PDF
    Connectivity analyses based on both resting-state (rs-)fMRI and diffusion weighted imaging studies suggest that the human brain contains regions that act as hubs for the entire brain, and that elements of the Default Mode Network (DMN) play a pivotal role in this network. In the present study, the detailed functional and structural connectivity of the DMN was investigated. Resting state fMRI (35 minute duration) and Diffusion Weighted Imaging (DWI) data (256 directions) were acquired from forty-seven healthy subjects at 3 T. Tractography was performed on the DWI data. The resting state data were analysed using a combination of Independent Component Analysis, partial correlation analysis and graph theory. This forms a data driven approach for examining the connectivity of the DMN. ICA defined regions of interest were used as a basis for a partial correlation analysis. The resulting partial correlation coefficients were used to compute graph theoretical measures. This was performed on a single subject basis, and combined to compute group results depicting the spatial distribution of betweenness centrality within the DMN. Hubs with high betweenness centrality were frequently found in association areas of the brain. This approach makes it possible to distinguish the hubs in the DMN as belonging to different anatomical association systems. The start and end points of the fibre tracts coincide with hubs found using the resting state analysi

    Functional anatomy of the human thalamus at rest

    No full text
    In the present work, we used resting state-fMRI to investigate the functional anatomy of the thalamus at rest by applying an Independent Component Analysis to delineate thalamic substructures into stable and reproducible parcels for the left and right thalamus. We determined 15 functionally distinct thalamic parcels, which differed in laterality and size but exhibited a correspondence with 18 cytoarchitectonally defined nuclei. We characterized their structural connectivity in determining DWI based cortical fiber pathways and found selected projections to different cortical areas. In contrast, the functional connections of these parcels were not confined to certain cortical areas or lobes. We, finally evaluated cortical projections and found particular subcortical and cortical pattern for each parcel, which partly exhibited a correspondence with the thalamo-cortical connectivity maps of the mouse

    Functional parcellation using time courses of instantaneous connectivity

    Get PDF
    Functional neuroimaging studies have led to understanding the brain as a collection of spatially segregated functional networks. It is thought that each of these networks is in turn composed of a set of distinct sub-regions that together support each network's function. Considering the sub-regions to be an essential part of the brain's functional architecture, several strategies have been put forward that aim at identifying the functional sub-units of the brain by means of functional parcellations. Current parcellation strategies typically employ a bottom-up strategy, creating a parcellation by clustering smaller units. We propose a novel top-down parcellation strategy, using time courses of instantaneous connectivity to subdivide an initial region of interest into sub-regions. We use split-half reproducibility to choose the optimal number of sub-regions. We apply our Instantaneous Connectivity Parcellation (ICP) strategy on high-quality resting-state FMRI data, and demonstrate the ability to generate parcellations for thalamus, entorhinal cortex, motor cortex, and subcortex including brainstem and striatum. We evaluate the subdivisions against available cytoarchitecture maps to show that our parcellation strategy recovers biologically valid subdivisions that adhere to known cytoarchitectural features
    corecore