571 research outputs found

    Effects of adding natural sounds to urban noises on the perceived loudness of noise and soundscape quality

    Get PDF
    Introducing pleasant natural sounds to mask urban noises is an important soundscape design strategy to improve acoustic comfort. This study investigates the effects of signal-to-noise ratio (SNR) between natural sounds (signal) and the target noises (noise) and their temporal characteristics on the perceived loudness of noise (PLN) and overall soundscape quality (OSQ) through a laboratory experiment. Two types of urban noise sources (hydraulic breaker and traffic noises) were set to A-weighted equivalent sound pressure levels (SPL) of 55, 65, and 75 dB and then augmented with two types of natural sounds (birdsong and stream), across a range of SNRs. Each acoustic stimulus was a combination of noise and natural sound at SNRs from −6 to 6 dB. Averaged across all cases, the subjective assessment of PLN showed that augmenting urban noise separately with the two natural sounds reduced the PLN by 17.9%, with no significant differences found between the birdsong and stream sounds. Adding natural sounds increased the OSQ by on average 18.3% across the cases, but their effects gradually decreased as the noise level increased. The OSQ of the birdsong and stream sounds were similar for traffic noise, whereas the stream sound was rated higher than the birdsong for the breaker noise. The results suggest that increasing the dissimilarity in temporal structure between the target noise and natural sounds could enhance the soundscape quality. Appropriate SNRs were explored considering both PLN and OSQ. The results showed that the SNR of −6 dB was desirable when the A-weighted SPL of the noise rose to 75 dB

    Effects of contexts in urban residential areas on the pleasantness and appropriateness of natural sounds

    Get PDF
    Before introducing natural sounds to potentially improve the soundscape quality, it is important to understand how key contextual factors (i.e. expected activities and audio-visual congruency) affect the soundscape in a given location. In this study, the perception of eight natural sounds (i.e. 4 birdsongs, 4 water sounds) at five urban recreational areas under the constant influence of road traffic was explored subjectively under three laboratory settings: visual-only, audio-only, and audio-visual. Firstly, expected socio-recreational activities of each location were determined in the visual-only setting. Subsequently, participants assessed the pleasantness and appropriateness of the soundscape at each site, for each of the eight natural sounds augmented to the same road traffic noise, in both audio-only and audio-visual settings. Interestingly, it was found that the expected activities in each location did not significantly affect natural sound perception, whereas audio-visual congruency of the locations significantly affected the pleasantness and appropriateness of the natural sounds. Particularly, the pleasantness and appropriateness decreased for water sounds when water features were not visually present. In contrast, perception with birdsongs was unaffected by their visibility likely due to the presence of vegetation. Hence, audio-visual coherence is central to the perception of natural sounds in outdoor spaces

    A mixed-reality approach to soundscape assessment of outdoor urban environments augmented with natural sounds

    Get PDF
    To investigate the effect of augmenting natural sounds in noisy environments, an in-situ experiment was conducted using a mixed-reality head-mounted display (MR HMD). Two outdoor locations close to an expressway were selected for the experiment. A natural sound (birdsong or stream) along with a hologram (sparrow/fountain or loudspeaker) was projected through the MR HMD. Participants were asked to adjust the natural sound levels to their preferred level under ambient traffic noise conditions at each location. Participants also assessed the perceived loudness of traffic (PLN) and overall soundscape quality (OSQ) in conditions with and without the augmented natural sounds. The results showed that both natural sounds significantly reduced the PLN and enhanced the OSQ. No significant differences in subjective responses were found between the loudspeaker and visual representations of the natural sound source as holograms. Analysis on the preferred signal-to-noise ratio (SNR), i.e. ratio of natural sound to traffic levels, indicated a strong negative correlation between the preferred SNRs and ambient traffic noise levels. Overall, the preferred SNR of the birdsong was significantly higher than that of the water sound. Among the acoustic parameters tested, the A-weighted traffic noise level was the strongest predictor for the preferred SNR of both the birdsong and water sound. However, the correlation for the water sound was relatively higher than the birdsong. This was due to the larger variance in the subjective evaluation for the birdsong

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Soundscape assessment: Towards a validated translation of perceptual attributes in different languages

    Get PDF
    The recently published ISO/TS 12913-2:2018 standard aims to provide researchers and practitioners around the world with a reliable questionnaire for soundscape characterization. The ISO Technical Specifications report protocols and attributes grounded in the soundscape literature, but only includes an English version. The applicability and reliability of these attributes in non-English speaking regions remains an open question, as research investigating translations of soundscape attributes is limited. To address this gap, an international collaboration was initiated with soundscape researchers from all over the world. Translation into 15 different languages, obtained through focus groups and panels of experts in soundscape studies, are proposed. The main challenges and outcomes of this preliminary exercise are discussed. The long-term objective is to validate the proposed translations using standardized listening experiments in different languages and geographical regions as a way to promote a widespread use of the soundscape attributes, both in academia and practice, across locations, populations and languages

    Time-Stratified Case Crossover Study of the Association of Outdoor Ambient Air Pollution With the Risk of Acute Myocardial Infarction in the Context of Seasonal Exposure to the Southeast Asian Haze Problem

    Get PDF
    Background-—Prior studies have demonstrated the association of air pollution with cardiovascular deaths. Singapore experiences seasonal transboundary haze. We investigated the association between air pollution and acute myocardial infarction (AMI) incidence in Singapore. Methods and Results-—We performed a time-stratified case-crossover study on all AMI cases in the Singapore Myocardial Infarction Registry (2010–2015). Exposure on days where AMI occurred (case days) were compared with the exposure on days where AMI did not occur (control days). Control days were chosen on the same day of the week earlier and later in the same month and year. We fitted conditional Poisson regression models to daily AMI incidence to include confounders such as ambient temperature, rainfall, wind-speed, and Pollutant Standards Index. We assessed relationships between AMI incidence and Pollutant Standards Index in the entire cohort and subgroups of individual-level characteristics. There were 53 948 cases. Each 30-unit increase in Pollutant Standards Index was association with AMI incidence (incidence risk ratio [IRR] 1.04, 95% CI 1.03–1.06). In the subgroup of ST-segment–elevation myocardial infarction the IRR was 1.00, 95% CI 0.98 to 1.03, while for non–ST-segment– elevation myocardial infarction, the IRR was 1.08, 95% CI 1.05 to 1.10. Subgroup analyses showed generally significant. Moderate/ unhealthy Pollutant Standards Index showed association with AMI occurrence with IRR 1.08, 95% CI 1.05 to 1.11 and IRR 1.09, 95% CI 1.01 to 1.18, respectively. Excess risk remained elevated through the day of exposure and for >2 years after. Conclusions-—We found an effect of short-term air pollution on AMI incidence, especially non–ST-segment–elevation myocardial infarction and inpatient AMI. These findings have public health implications for primary prevention and emergency health services during haze

    Wall-thickness-dependent strength of nanotubular ZnO

    Get PDF
    We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au
    corecore