61 research outputs found

    Association between sleep quality and type 2 diabetes at 20-year follow-up in the Southall and Brent REvisited (SABRE) cohort: a triethnic analysis.

    Get PDF
    BACKGROUND: The risk of developing type 2 diabetes associated with poor sleep quality is comparable to other lifestyle factors (eg, overweight, physical inactivity). In the UK, these risk factors could not explain the two to three-fold excess risks in South-Asian and African-Caribbean men compared with Europeans. This study investigates (1) the association between mid-life sleep quality and later-life type 2 diabetes risk and (2) the potential modifying effect of ethnicity. METHODS: The Southall and Brent REvisited cohort is composed of Europeans, South-Asians and African-Caribbeans (median follow-up 19 years). Complete-case analysis was performed on 2189 participants without diabetes at baseline (age=51.7±7 SD). Competing risks regressions were used to estimate the HRs of developing diabetes associated with self-reported baseline sleep (difficulty falling asleep, early morning waking, waking up tired, snoring and a composite sleep score), adjusting for confounders. Modifying effects of ethnicity were analysed by conducting interaction tests and ethnicity-stratified analyses. RESULTS: There were 484 occurrences of incident type 2 diabetes (22%). Overall, there were no associations between sleep exposures and diabetes risk. Interaction tests suggested a possible modifying effect for South-Asians compared with Europeans for snoring only (p=0.056). The ethnicity-stratified analysis found an association with snoring among South-Asians (HR 1.41, 95% CI 1.08 to 1.85), comparing those who snored often/always versus occasionally/never. There were no elevated risks for the other sleep exposures. CONCLUSION: The association between snoring and type 2 diabetes appeared to be modified by ethnicity, and was strongest in South-Asians

    The 28-day mortality prediction in sepsis patients using static lactate concentration and early lactate clearance: an observational study.

    Get PDF
    Sepsis causes high mortality and morbidity. Static lactate concentration and early lactate clearance are cited to be a predictor for sepsis survival. This study examined the clinical utility of static lactate concentration and early lactate clearance within the first six hours of admission in Emergency Department (ED) to predict 28-day mortality rate in sepsis patients. Patients who presented with sepsis, severe sepsis or septic shock and admitted to ED of Universiti Kebangsaan Malaysia Medical Centre were recruited. Blood lactate concentrations were measured upon admission (H0), at 1st hour (H1) and 6th hour (H6), respectively. Either standard treatment of sepsis or early goal directed therapy was initiated according to sepsis severity. A follow-up report was conducted at 28 days via telephone call, e-mail or case notes. Patients were later classified into survivor and non-survivor as final outcome. Static lactate concentration appeared to be significantly higher for non-survivor as compared to the survival group at H0, H1 and H6 (p<0.05). The lactate clearance trend reflects no relationship between early lactate clearance and 28-day mortality. Static lactate concentration showed a superior predictor for sepsis over early lactate clearance. Although early lactate clearance was unable to prove its ability to predict 28-day mortality, our findings suggest it can be a useful tool to gauge the resuscitation outcome

    Wall-thickness-dependent strength of nanotubular ZnO

    Get PDF
    We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au

    Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholangiocarcinoma is an aggressive tumor with a tendency for local invasion and distant metastases. Timely diagnosis is very important because surgical resection (R0) remains the only hope for a cure. However, at present, there is no available tumor marker that can differentiate cholangiocarcinoma from benign bile duct disease. Previous studies have demonstrated that matrix metalloproteinase (MMP)-7 and MMP-9 are frequently expressed in cholangiocarcinoma specimens.</p> <p>Methods</p> <p>This study was designed to determine whether the serum levels of MMP-7 and MMP-9 can discriminate cholangiocarcinoma patients from benign biliary tract disease patients in comparison to carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). We measured the level of CEA, CA19-9, MMP-7 and MMP-9 in the serum of 44 cholangiocarcinoma and 36 benign biliary tract diseases patients.</p> <p>Results</p> <p>Among the serum levels of CEA, CA19-9, MMP-7 and MMP-9, only the serum MMP-7 level was significantly higher in the patients with cholangiocarcinoma (8.9 ± 3.43 ng/ml) compared to benign biliary tract disease patients (5.9 ± 3.03 ng/ml) (<it>p </it>< 0.001). An receiver operating characteristic (ROC) curve analysis revealed that the detection of the serum MMP-7 level is reasonably accurate in differentiating cholangiocarcinoma from benign biliary tract disease patients (area under curve = 0.73; 95% CI = 0.614–0.848). While the areas under the curve of the ROC curves for CEA, CA19-9 and MMP-9 were 0.63 (95% CI = 0.501–0.760), 0.63 (95% CI = 0.491–0.761) and 0.59 (95% CI = 0.455–0.722), respectively.</p> <p>Conclusion</p> <p>Serum MMP-7 appears to be a valuable diagnostic marker in the discrimination of cholangiocarcinoma from benign biliary tract disease. Further prospective studies for serum MMP-7 measurement should be carried out to further investigate the potential of this molecule as a biomarker of cholangiocarcinoma.</p

    Exploring Off-Targets and Off-Systems for Adverse Drug Reactions via Chemical-Protein Interactome — Clozapine-Induced Agranulocytosis as a Case Study

    Get PDF
    In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Glaucoma related retinal oximetry: a technology update

    No full text
    Zhu Li Yap,1,2 Sushma Verma,2 Yi Fang Lee,1,2 Charles Ong,1,2 Aditi Mohla,1,2 Shamira A Perera1,2 1Singapore National Eye Center, 2Singapore Eye Research Institute, Singapore Abstract: There are two long-standing theories about the pathogenesis of glaucoma &ndash; barotrauma and the effect of vascular hypoxia. Currently, it is still unknown whether diminished blood flow is the cause or result of glaucomatous atrophy of ganglion cells and the optic nerve. Though many other imaging techniques used to directly assess ocular blood flow have been well studied, they are limited by their inability to directly assess metabolism in the ocular tissues or measure the oxygen carrying capacity in the vessels. Retinal oximetry is a relatively novel, noninvasive imaging technique that reliably measures oxygen saturation levels in the retinal vessels, offering surrogate markers for the metabolic demands of the eye. The clinical significance of these measurements has not been well established. Thus, this review gives an overview of ocular imaging and current retinal oximetry techniques, while contextualizing the important oximetry studies that have investigated the vascular theory behind glaucoma. Keywords: retinal oximetry, glaucoma, Oxymap, retinal vasculature, glaucoma imagin
    corecore