14 research outputs found

    The beta 2-adrenergic receptor as a surrogate odorant receptor in mouse olfactory sensory neurons

    No full text
    In the mouse, mature olfactory sensory neurons (OSNs) express one allele of one of the similar to 1200 odorant receptor (OR) genes, which encode G-protein coupled receptors (GPCRs). Axons of OSNs that express the same OR coalesce into homogeneous glomeruli at conserved positions in the olfactory bulb. ORs are involved in OR gene choice and OSN axonal wiring, but the mechanisms remain poorly understood. One approach is to substitute an OR genetically with another GPCR, and to determine in which aspects this GPCR can serve as a surrogate OR under experimental conditions. Here, we characterize a novel gene-targeted mouse strain in which the mouse beta 2-adrenergic receptor (beta 2AR) is coexpressed with tauGFP in OSNs that choose the OR locus M71 for expression (beta 2AR -> M71-GFP). By crossing these mice with beta 2AR -> M71-lacZ gene-targeted mice, we find that differentially tagged beta 2AR -> M71 alleles are expressed monoallelically. The OR coding sequence is thus not required for monoallelic expression - the expression of one of the two alleles of a given OR gene in an OSN. We detect strong (beta 2AR immunoreactivity in dendritic cilia of (beta 2AR -> M71-GFP OSNs. These OSNs respond to the beta 2AR agonist isoproterenol in a dose-dependent manner. Axons of beta 2AR -> M71-GFP OSNs coalesce into homogeneous glomeruli, and beta 2AR immunoreactivity is detectable within these glomeruli. We do not find evidence for expression of endogenous beta 2AR in OSNs of wild-type mice, also not in M71-expressing OSNs, and we do not observe overt differences in the olfactory system of beta 2AR and beta 1AR knockout mice. Our findings corroborate the experimental value of the beta 2AR as a surrogate OR, including for the study of the mechanisms of monoallelic expression. (C) 2013 Elsevier Inc All rights reserved

    Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli

    Get PDF
    Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca^(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions

    Trpc2-Expressing Sensory Neurons in the Main Olfactory Epithelium of the Mouse

    Get PDF
    The mouse olfactory system contains two distinct chemosensory epithelia, the main olfactory epithelium (MOE) and the vomeronasal epithelium (VNE). Their sensory neurons express odorant receptor genes and vomeronasal receptor genes, respectively, and differ fundamentally in their signal transduction pathways. Genes required for chemosensory transduction are the cyclic nucleotide-gated channel subunit Cnga2 and the transient receptor potential cation channel Trpc2, respectively. Here, we document two previously unrecognized types of Trpc2+ neurons in the MOE of mice of various ages, including adults. These cell types express Cnga2 and can be distinguished by expression of adenylate cyclase Adcy3 (positive: type A; negative: type B). A third of MOE neurons that express the odorant receptor genes Olfr68/Olfr69 coexpress Trpc2 and are type A cells. In Trpc2-IRES-taulacZ gene-targeted mice, some labeled axons coalesce into glomeruli in the main olfactory bulb. Our findings have implications for the conventional VNE-centric interpretation of the behavioral phenotypes of Trpc2 knockout mice

    Olfactory receptor antagonism between odorants

    No full text
    The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality

    Correction to: Which is heterogeneous, stress or strength? An estimation from high-density seismic observations

    No full text
    Abstract After publication of this work [1], an error was noticed. Figures 10 and 12 were accidentally swapped. This was caused due to a typesetting error. This is now corrected below: The publisher apologises for these errors

    Which is heterogeneous, stress or strength? An estimation from high-density seismic observations

    Get PDF
    The Correction to this article has been published in Earth, Planets and Space 2018 70:20.Using data from high-density seismic observation networks installed in the western Nagano Prefecture region in Japan, we precisely determined focal mechanisms and estimated the high-resolution stress field at a scale of 1 km. Almost all differences between observed and calculated slip directions (misfit) were smaller than the errors in focal mechanisms at grid points away from the mainshock fault. This finding clearly indicates that the estimated uniform stress suitably explains focal mechanisms in each subregion apart from the mainshock fault. Misfits are relatively large at grid points near the mainshock fault, but many of these misfits are smaller than the errors in focal mechanisms, and stress is regarded as uniform for a greater portion within each subregion. However, we found that focal mechanisms and P-axes varied widely and differed from each other for a short focal distance of 100 m. These results clearly show that stress can be regarded as uniform, but that strength is heterogeneous
    corecore