1 research outputs found

    Triggering the formation of direct collapse black holes by their congeners

    Full text link
    Direct collapse black holes (DCBHs) are excellent candidates as seeds of supermassive black holes (SMBHs) observed at z \gsim 6. The formation of a DCBH requires a strong external radiation field to suppress H2\rm H_2 formation and cooling in a collapsing gas cloud. Such strong field is not easily achieved by first stars or normal star-forming galaxies. Here we investigate a scenario in which the previously-formed DCBH can provide the necessary radiation field for the formation of additional ones. Using one-zone model and the simulated DCBH Spectral Energy Distributions (SEDs) filtered through absorbing gas initially having column density NHN_{\rm H}, we derive the critical field intensity, JLWcritJ_{\rm LW}^{\rm crit}, to suppress H2\rm H_2 formation and cooling. For the SED model with NH=1.3Γ—1025N_{\rm H}=1.3\times10^{25} cmβˆ’2^{-2}, 8.0Γ—10248.0\times10^{24} cmβˆ’2^{-2} and 5.0Γ—10245.0\times10^{24} cmβˆ’2^{-2}, we obtain JLWcritβ‰ˆ22J_{\rm LW}^{\rm crit}\approx22, 35 and 54, all much smaller than the critical field intensity for normal star-forming galaxies (J_{\rm LW}^{\rm crit}\simgt 1000). X-ray photons from previously-formed DCBHs build up a high-zz X-ray background (XRB) that may boost the JLWcritJ_{\rm LW}^{\rm crit}. However, we find that in the three SED models JLWcritJ_{\rm LW}^{\rm crit} only increases to β‰ˆ80\approx80, 170 and 390 respectively even when \dt{\rho}_\bullet reaches the maximum value allowed by the present-day XRB level (0.22,0.034,0.006Β MβŠ™0.22, 0.034, 0.006~M_\odotyrβˆ’1^{-1}Mpcβˆ’3^{-3}), still much smaller than the galactic value. Although considering the XRB from first galaxies may further increase JLWcritJ_{\rm LW}^{\rm crit}, we conclude that our investigation supports a scenario in which DCBH may be more abundant than predicted by models only including galaxies as external radiation sources.Comment: 18 pages, 14 figures, 5 tables, ApJ in pres
    corecore