166 research outputs found

    Angiomatous Nasal Polyp Diagnosed by Preoperative Imaging and Successfully Resected by Endonasal Endoscopic Surgery: A Case Report

    Get PDF
    Angiomatous polyp is a benign, nonneoplastic nasal polyp that accounts for 4-5% of all inflammatory nasal polyps but is rarely reported in the literature. It can grow rapidly and exhibit an aggressive clinical behavior that can simulate malignant sinonasal tumor. We herein report a case of a 13-year-old boy with a rapidly growing angiomatous polyp in the nasal cavity. We had followed up the patient without significant changes for two years, but the tumor had rapidly grown in the last six months. At first, the rapid growth of the tumor and the bone erosion of the maxilla were suggestive of a malignant tumor. However, with preoperative magnetic resonance imaging (MRI) and [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography imaging findings, we established the corrective diagnosis of an angiomatous polyp. After the diagnostic imaging, we performed an endoscopic endonasal surgery and totally resected the tumor without unnecessary excessive surgery. Recognition of this disease that can mimic malignancy is important to avoid excessive surgery such as en bloc resection by craniofacial approach, and we believe that MRI findings can be helpful for the imaging diagnosis

    Biomechanical effects of offset placement of dental implants in the edentulous posterior mandible

    Get PDF
    Background: Proper implant placement is very important for long-term implant stability. Recently, numerous biomechanical studies have been conducted to clarify the relationship between implant placement and peri-implant stress. The placement of multiple implants in the edentulous posterior mandible has been studied by geometric analysis, three-dimensional finite element analysis (FEA), model experimentation, etc. Offset placement is a technique that reduces peri-implant load. However, few studies have used multiple analyses to clarify the value of the offset placement under identical conditions.The present study aimed to clarify the biomechanical effects of offset placement on the peri-implant bone in edentulous posterior mandibles by comparative investigation using FEA and model experimentation with strain gauges.Methods: Three implants were embedded in an artificial mandible in the parts corresponding to the first premolar, the second premolar, and the first molar. A titanium superstructure was mounted to prepare models (experimental models). Three load points (buccal, central, and lingual) were established on the part of the superstructure corresponding to the first molar. Three types of experimental models, each with a different implant placement, were prepared. In one model, the implants were placed in a straight line; in the other two, the implants in the parts corresponding to the second premolar and the first molar were offset each by a 1-mm increment to the buccal or lingual side. Four strain gauges were applied to the peri-implant bone corresponding to the first molar.The experimental models were imaged by micro-computed tomography (CT), and FEA models were constructed from the CT data. A vertical load of 100 N was applied on the three load points in the experimental models and in the FEA models. The extent of compressed displacement and the strain in the peri-implant bone were compared between the experimental models and the FEA models Results: Both experimental and FEA models suffered the least compressed displacement during central loading in all placements. The greatest stress and compressive strain was on the load side in all types of placements.Conclusions: Offset placement may not necessarily be more biomechanically effective than straight placement in edentulous posterior mandibles.Keywords: Offset placement, Three-dimensional finite element analysis, FEA, Amount of compressed displacement, Stress distribution, Strain gaug

    A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model

    Get PDF
    Background: Three-dimensional finite element analysis (FEA) is effective in analyzing stress distributions around dental implants. However, FEA of living tissue involves many conditions, and the structures and behaviors are complex; thus, it is difficult to ensure the validity of the results. To verify reproducibility and validity, we embedded implants in experimental models and constructed FEA models; implant displacements were compared under various loading conditions. Methods: Implants were embedded in the molar regions of artificial mandibles to fabricate three experimental models. A titanium superstructure was fabricated and three loading points (buccal, central, and lingual) were placed on a first molar. A vertical load of 100 N was applied to each loading point and implant displacements were measured. Next, the experimental models were scanned on micro computed tomography (CT) and three-dimensional FEA software was used to construct two model types. A model where a contact condition was assumed for the implant and artificial mandible (a contact model) was constructed, as was a model where a fixation condition was assumed (a fixation model). The FEA models were analyzed under similar conditions as the experimental models; implant displacements under loading conditions were compared between the experimental and FEA models. Reproducibility of the models was assessed using the coefficient of variation (CV), and validity was assessed using a correlation coefficient.Results: The CV of implant displacement was 5–10% in the experimental and FEA models under loading conditions. Absolute values of implant displacement under loading were smaller in FEA models than the experimental model, but the displacement tendency at each loading site was similar. The correlation coefficient between the experimental and contact models for implant displacement under loading was 0.925 (p < 0.01). The CVs of equivalent stress values in the FEA models were 0.52–45.99%.Conclusions: Three-dimensional FEA models were reflective of experimental model displacements and produced highly valid results. Three-dimensional FEA is effective for investigating the behavioral tendencies of implants under loading conditions. However, the validity of the absolute values was low and the reproducibility of the equivalent stresses was inferior; thus, the results should be interpreted with caution

    Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network

    Get PDF
    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4–7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network

    Disinfection of otorhinolaryngological endoscopes with electrolyzed acid water: A cross-sectional and multicenter study

    Get PDF
    Glutaraldehyde, a germicide for reprocessing endoscopes that is important for hygiene in the clinic, might be hazardous to humans. Electrolyzed acid water (EAW) has a broad anti-microbial spectrum and safety profile and might be a glutaraldehyde alternative. We sought to assess EAW disinfection of flexible endoscopes in clinical otorhinolaryngological settings and its in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacteria commonly isolated in otorhinolaryngology. Ninety endoscopes were tested for bacterial contamination before and after endoscope disinfection with EAW. The species and strains of bacteria were studied. The in vitro inactivation of bacteria and SARS-CoV-2 by EAW was investigated to determine the efficacy of endoscope disinfection. More than 20 colony-forming units of bacteria at one or more sampling sites were detected in 75/90 microbiological cultures of samples from clinically used endoscopes (83.3%). The most common genus detected was Staphylococcus followed by Cutibacterium and Corynebacterium at all sites including the ears, noses, and throats. In the in vitro study, more than 107 CFU/mL of all bacterial species examined were reduced to below the detection limit ( 105 PFU) was decreased to less than 5 PFU. Effective inactivation of SARS-CoV-2 was also observed with a 19:1 ratio of EAW to the virus. EAW effectively reprocessed flexible endoscopes contributing to infection control in medical institutions in the era of the coronavirus disease 2019 pandemic

    Distribution, productivity, life history and biodiversity of seagrass community along Sanriku Coast: A review

    Get PDF
    The seagrass flora in Japan is characterized by the occurrence of several species of Zosteraceae that are considered to be endemic to the northwestern Pacific. In seagrass beds along Sanriku Coast, northeastern Honshu Island of Japan, the endemic Zostera spp. generally occur at subtidal soft bottom, usually forming multispecific seagrass beds with the cosmopolitan eelgrass Z. marina. This paper reviews some of the recent studies on ecology of the seagrass community conducted at Otsuchi Bay, Funakoshi Bay and Yamada Bay along Sanriku Coast of Iwate Prefecture. We specially focus on following subjects ; (1) spatial distribution of Z. caespitosa in Yamada Bay surveyed using eco-sounding techniques, (2) comparative studies on morphological and life history traits of Zostera spp., (3) quantitative estimation on shoot dynamics, growth and primary production of Z. caulescens, (4) ecology of epifaunal community on the aboveground parts of seagrasses, and (5) population genetic structure and gene flow among populations of Z. caespitosa analyzed using molecular data. The results of these studies showed that the seagrass community along Sanriku Coast is one of the most productive parts of the coastal ecosystem, and that various environmental and biological factors are involved in a complex manner to produce observed patterns of population structure and dynamics of the seagrass community
    corecore