863 research outputs found
Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode
In MicroPattern Gas Detectors (MPGD) when the pixel size is below 100 micron
and the number of pixels is large (above 1000) it is virtually impossible to
use the conventional PCB read-out approach to bring the signal charge from the
individual pixel to the external electronics chain. For this reason a custom
CMOS array of 2101 active pixels with 80 micron pitch, directly used as the
charge collecting anode of a GEM amplifying structure, has been developed and
built. Each charge collecting pad, hexagonally shaped, realized using the top
metal layer of a deep submicron VLSI technology is individually connected to a
full electronics chain (pre-amplifier, shaping-amplifier, sample and hold,
multiplexer) which is built immediately below it by using the remaining five
active layers. The GEM and the drift electrode window are assembled directly
over the chip so the ASIC itself becomes the pixelized anode of a MicroPattern
Gas Detector. With this approach, for the first time, gas detectors have
reached the level of integration and resolution typical of solid state pixel
detectors. Results from the first tests of this new read-out concept are
presented. An Astronomical X-Ray Polarimetry application is also discussed.Comment: 11 pages, 14 figures, presented at the Xth Vienna Conference on
Instrumentation (Vienna, February 16-21 2004). For a higher resolution paper
contact [email protected]
Single- and Two-Component GRB Spectra in the Fermi GBM-LAT Energy Range
Most Fermi GRB spectra appear as either a broken power law extending to GeV
energies or as a broken power with a separate GeV power law component. Here we
show that such spectra can be understood in terms of magnetically dominated
relativistic jets where a dissipative photosphere produces the prompt MeV
emission, which is extended into the GeV range by inverse Compton scattering in
the external shock, with possible contributions from a reverse shock as well.
The bulk Lorentz factors required in these models are in the range of 300-600,
and the MeV-GeV time delays arise naturally. In some cases an optical flash and
a sub-dominant thermal component are also present.Comment: Accepted for publication in ApJ, 31 pages, 4 figure
Low energy polarization sensitivity of the Gas Pixel Detector
An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been
proposed to be included in many upcoming space missions to fill the gap of
about 30 years from the first (and to date only) positive measurement of
polarized X-ray emission from an astrophysical source. The estimated
sensitivity of the current prototype peaks at an energy of about 3 keV, but the
lack of readily available polarized sources in this energy range has prevented
the measurement of detector polarimetric performances.
In this paper we present the measurement of the Gas Pixel Detector
polarimetric sensitivity at energies of a few keV and the new, light, compact
and transportable polarized source that was devised and built to this aim.
Polarized photons are produced, from unpolarized radiation generated with an
X-ray tube, by means of Bragg diffraction at nearly 45 degrees.
The employment of mosaic graphite and flat aluminum crystals allow the
production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from
the diffraction of unpolarized continuum or line emission. The measured
modulation factor of the Gas Pixel Detector at these energies is in good
agreement with the estimates derived from a Monte Carlo software, which was up
to now employed for driving the development of the instrument and for
estimating its low energy sensitivity. In this paper we present the excellent
polarimetric performance of the Gas Pixel Detector at energies where the peak
sensitivity is expected. These measurements not only support our previous
claims of high sensitivity but confirm the feasibility of astrophysical X-ray
photoelectric polarimetry.Comment: 15 pages, 12 figures. Accepted for publication in NIM
Simulating the High Energy Gamma-ray sky seen by the GLAST Large Area Telescope
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented. A new event display based
on the HepRep protocol was implemented. The full simulation was used to
simulate a full week of GLAST high energy gamma-ray observations. This paper
outlines the contribution developed by the Italian GLAST software group.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts
Recent observations by the Gamma-ray Space Telescope have confirmed
the existence of thermal and non-thermal components in the prompt photon
spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright
Fermi GRBs, we have discovered a correlation between the observed photospheric
and non-thermal -ray emission components of several GRBs using a
physical model that has previously been shown to be a good fit to the Fermi
data. From the spectral parameters of these fits we find that the
characteristic energies, and , of these two components are
correlated via the relation which varies from
GRB to GRB. We present an interpretation in which the value of index
indicates whether the jet is dominated by kinetic or magnetic energy. To date,
this jet composition parameter has been assumed in the modeling of GRB outflows
rather than derived from the data
- âŠ