59 research outputs found

    Modulation of neurotrophic signaling pathways by polyphenols

    Get PDF
    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases

    HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers.

    Get PDF
    AbstractCancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of severa..

    Dihydronaphthalenone chalconoid derivatives as potential cathepsin B inhibitors; design, synthesis, cytotoxicity evaluation and docking analysis

    Get PDF
    Cathepsin B, an abundant expressed cysteine peptidase, plays a key role in cancer cell proliferation, tumor metastasis, apoptosis, angiogenesis, invasion and migration. Therefore, development of cathepsin B inhibitors to treat cancer is of great significance. In this study, dihydronaphthalenone chalconoid derivatives containing different benzyliden moieties were synthesized via an efficient route in microwave condition that resulted in the desired compounds in high yields compared to acid- or base-catalyzed refluxing conditions. Cytotoxicity of the compounds was evaluated against K562, HT-29 and MCF-7 human cancer cell lines by MTT assay. P1, P3 and P9 (containing 4-OCH3, 3-NO2 and 4-CN moieties on phenyl ring, respectively) exhibited good cytotoxic activity with an IC50 range of 7.1-28.9 ÎĽM. Molecular docking analysis was carried out to investigate the possible interactions and binding modes of all compounds with cathepsin B. The most promising compounds, P1, P3 and P9 were well accommodated within the active site and had the least estimated free binding energies. It was concluded from both MTT assay and docking studies that some dihydronaphthalenone chalconoid derivatives could be suggested as effective cytotoxic agents and potential cathepsin B inhibitors

    5-Oxo-hexahydroquinoline derivatives and their tetrahydroquinoline counterparts as multidrug resistance reversal agents

    Get PDF
    Cancer is a leading cause of death worldwide. Multidrug resistance (MDR) is a main reason of chemotherapy failure in many patients and is often related to overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1). Agents that are capable of modulation of the activity of these transporters might be effective in overcoming MDR. In this study, a new set of 1,4,5,6,7,8-hexahydro 5-oxo quinoline-3-carboxamide derivatives bearing 4-methylthiazole moiety and their tetrahydroquinoline counterparts were synthesized. MDR reversal activity of these 16 newly synthesized derivatives was tested in P-gp overexpressing MES-SA-DX5 human uterine sarcoma cells by flow cytometric determination of Rhodamine123 efflux. The effect of the most potent compounds in induction of apoptosis and alterations of cell cycle was examined in these cells by a flow cytometric method. Inherent cytotoxicity of the synthesized compounds was evaluated against MCF-7, A-549 and K562 cancer cell lines, as well as MES-SA-DX5 and their parental non-resistant MES-SA and also HEK-293 non-cancerous cells by MTT assay. Compounds A1 and A2 with 5-oxo-hexahydroquinoline structure bearing 2,4-dichlorophenyl and 4-bromophenyl moieties, respectively, and their tetrahydroquinoline counterparts B1 and B2 significantly blocked P-gp efflux, induced apoptosis and showed the highest cytotoxicities against MES-SA-DX5 cells. However, only A2 and B2 compounds were relatively selective against cancer and MDR cells as compared to non-resistant and non-cancerous cells. These findings demonstrate that 5-oxo-hexahydroquinoline and 5-oxo-tetrahydroquinoline derivatives represent promising agents with therapeutic potential in drug resistant cancers

    Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met

    Get PDF
    Aberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5-25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers

    Behaviour of 9-Ethyl-9H-carbazole Hydrazone Derivatives Against Oxidant Systems: Protective Effect on Amyloid β-Induced Damage

    Get PDF
    Antioxidants are helpful in prevention of several diseases related with oxidative stress including neurodegenerative disorders. In recent studies, carbazoles were given proof of promising antioxidant activities. In this article, 9-ethyl-9H-carbazole hydrazone derivatives were synthesized, characterized and their in vitro antioxidant activity and possible cytotoxic effects were investigated. Furthermore, protective effect of the synthesized derivatives against amyloid β-induced damage in PC12 neuronal cells was examined by using MTT assay. The newly synthesized carbazoles were found to have radical scavenging activity with a varying potency both in cell-free and cell-based in vitro assays. Several compounds, especially such as 3d and 3e, 3m and 3n bearing two halogen groups on the phenyl ring, were found to have cytotoxic activity. However, their cytotoxic activities were not higher than that of melatonin. Several compounds also significantly protected neuronal PC12 cells against amyloid β-induced damage, which can be defined as neuroprotective agents. (4-(2-((9-Ethyl-9H-carbazol-3-yl)methylene)hydrazinyl)benzonitrile) 3r was found as the most active compound with both radical scavenging activity and neuroprotective effects against amyloid β-induced damage. These findings might provide an alternative strategy for developing novel carbazole derivatives for management of neurodegenerative diseases, such as Alzheimer\u27s disease. This work is licensed under a Creative Commons Attribution 4.0 International License

    Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer

    No full text
    MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients

    Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients

    Synthesis and Cytotoxicity Study of New Cyclopenta [b] quinoline-1,8-dione Derivatives

    No full text
    Abstract DNA intercalators belong to aromatic heterocyclic compounds interacting reversibly with DNA. These compounds have been used extremely as cytotoxic agents against cancer. In this study, the synthesis and biological activity of some novel derivatives of cyclopenta [b] quinoline-1, 8-dione as new intercalating agent were investigated. Twenty novel derivatives of cyclopenta [b] quinoline-1, 8-dione were synthesized by molecular condensation of equivalent amount of 3-imino cyclopentanone, corresponding aldehyde and cyclohexane-1, 3-dione. Then, their cytotoxic activity was evaluated against HeLa, LS180, MCF-7 and Raji cancer cell lines by MTT assay. The results of cytotoxic activity evaluation indicate that the most of synthesized compounds show weak cytotoxic effect on the different cell lines (IC 50 of these compounds is higher than 50 or 100 m ). According to previous studies, in the case of compounds with the weak biological activity, it is more suitable to use IC 15 and IC 30 instead of IC 50 as the indicator of biological activity. Since most of compounds have weak cytotoxic effect, we also calculated IC 15 and IC 30 for evaluating the cytotoxic activity of synthesized compounds. The most potent compound, 6 h (9-(3-Bromo-phenyl)-4-pheny l-2, 3, 5, 6, 7, 9-hexahydro-4H-cyclopenta [b] quinoline-1, 8-dione), containing bromophenyl moiety and phenyl substitute on nitrogen of central quinoline ring, show significant cytotoxic activity especially in Raji and HeLa cell lines (IC 30 : 82 and 24.4 m M respectively) comparing to other compounds. Although the results of cytotoxic activity evaluation demonstrated that the in-vitro anti-cancer effect of synthesized compounds are mainly low, it seems that this structure can be used as a novel cytotoxic scaffold for further modification and design of novel potent compounds

    Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis.

    No full text
    Oxidative stress is suggested to be involved in the pathogenesis of systemic sclerosis (SSc). The aim of the present study was to clarify such a hypothesis by determination of four different plasmatic parameters of oxidative stress, and to define its role in the microvascular damage, assessed by nailfold capillaroscopy (NC). Plasma samples of 18 patients with SSc were analyzed. The biomarkers measured were: total antioxidant capacity, hydroperoxides (ROOHs), and sulfhydryl (SH) and carbonyl (CO) groups. Each patient had a detailed clinical assessment and underwent an NC. The results showed significantly increased ROOHs in SSc patients compared to control group (5.02 +/- 0.24 vs 3.28 +/- 0.19 micromol/l; p < 0.05). Plasmatic levels of SH groups were significantly lower in SSc (0.466 +/- 0.08 mmol/l) compared to control group (0.542 +/- 0.04 mmol/l; p < 0.002). Plasma levels of ROOHs correlated with the capillaroscopy semiquantitative rating scale score (p < 0.05) and with the rating system for avascular areas (p < 0.03). The levels of CO groups inversely correlated with modified Rodnan's skin score (p < 0.039) and were lower in patients with pulmonary fibrosis (p < 0.045), while the levels of SH groups were lower in those presenting gastrointestinal involvement (p < 0.029). The obtained data indicate augmented free radical-mediated injury in SSc and also show correlations among oxidative abnormalities, some clinical findings, and signs of a more severe microvascular involvement. These results give more evidence to the connection between oxidative impairment and SSc
    • …
    corecore