33 research outputs found

    Geometry of quantum observables and thermodynamics of small systems

    Full text link
    The concept of ergodicity---the convergence of the temporal averages of observables to their ensemble averages---is the cornerstone of thermodynamics. The transition from a predictable, integrable behavior to ergodicity is one of the most difficult physical phenomena to treat; the celebrated KAM theorem is the prime example. This Letter is founded on the observation that for many classical and quantum observables, the sum of the ensemble variance of the temporal average and the ensemble average of temporal variance remains constant across the integrability-ergodicity transition. We show that this property induces a particular geometry of quantum observables---Frobenius (also known as Hilbert-Schmidt) one---that naturally encodes all the phenomena associated with the emergence of ergodicity: the Eigenstate Thermalization effect, the decrease in the inverse participation ratio, and the disappearance of the integrals of motion. As an application, we use this geometry to solve a known problem of optimization of the set of conserved quantities---regardless of whether it comes from symmetries or from finite-size effects---to be incorporated in an extended thermodynamical theory of integrable, near-integrable, or mesoscopic systems

    Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking

    Full text link
    In this Letter, we show that a three-dimensional Bose-Einstein solitary wave can become stable if the dispersion law is changed from quadratic to quartic. We suggest a way to realize the quartic dispersion, using shaken optical lattices. Estimates show that the resulting solitary waves can occupy as little as ∼1/20\sim 1/20-th of the Brillouin zone in each of the three directions and contain as many as N=103N = 10^{3} atoms, thus representing a \textit{fully mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.

    Triangular Gross-Pitaevskii breathers and Damski-Chandrasekhar shock waves

    Get PDF
    The recently proposed map [arXiv:2011.01415] between the hydrodynamic equations governing the two-dimensional triangular cold-bosonic breathers [Phys. Rev. X 9, 021035 (2019)] and the high-density zero-temperature triangular free-fermionic clouds, both trapped harmonically, perfectly explains the former phenomenon but leaves uninterpreted the nature of the initial (t=0t=0) singularity. This singularity is a density discontinuity that leads, in the bosonic case, to an infinite force at the cloud edge. The map itself becomes invalid at times t<0t<0. A similar singularity appears at t=T/4t = T/4, where TT is the period of the harmonic trap, with the Fermi-Bose map becoming invalid at t>T/4t > T/4. Here, we first map -- using the scale invariance of the problem -- the trapped motion to an untrapped one. Then we show that in the new representation, the solution [arXiv:2011.01415] becomes, along a ray in the direction normal to one of the three edges of the initial cloud, a freely propagating one-dimensional shock wave of a class proposed by Damski in [Phys. Rev. A 69, 043610 (2004)]. There, for a broad class of initial conditions, the one-dimensional hydrodynamic equations can be mapped to the inviscid Burgers' equation, a nonlinear transport equation. More specifically, under the Damski map, the t=0t=0 singularity of the original problem becomes, verbatim, the initial condition for the wave catastrophe solution found by Chandrasekhar in 1943 [Ballistic Research Laboratory Report No. 423 (1943)]. At t=T/8t=T/8, our interpretation ceases to exist: at this instance, all three effectively one-dimensional shock waves emanating from each of the three sides of the initial triangle collide at the origin, and the 2D-1D correspondence between the solution of [arXiv:2011.01415] and the Damski-Chandrasekhar shock wave becomes invalid.Comment: 13 pages, 2 figures. Submission to SciPos

    Threshold for Chaos and Thermalization in One-Dimensional Mean-Field Bose-Hubbard Model

    Full text link
    We study the threshold for chaos and its relation to thermalization in the 1D mean-field Bose-Hubbard model, which in particular describes atoms in optical lattices. We identify the threshold for chaos, which is finite in the thermodynamic limit, and show that it is indeed a precursor of thermalization. Far above the threshold, the state of the system after relaxation is governed by the usual laws of statistical mechanics.Comment: 4 pages, 3 figures, published versio

    Coherent matter waves emerging from Mott-insulators

    Full text link
    We study the formation of (quasi-)coherent matter waves emerging from a Mott insulator for strongly interacting bosons on a one-dimensional lattice. It has been shown previously that a quasi-condensate emerges at momentum k=\pi/2a, where a is the lattice constant, in the limit of infinitely strong repulsion (hard-core bosons). Here we show that this phenomenon persists for all values of the repulsive interaction that lead to a Mott insulator at a commensurate filling. The non-equilibrium dynamics of hard-core bosons is treated exactly by means of a Jordan-Wigner transformation, and the generic case is studied using a time-dependent density matrix renormalization group technique. Different methods for controlling the emerging matter wave are discussed.Comment: 20 pages, 11 figures. Published versio

    Short-Distance Correlation Properties of the Lieb-Liniger System and Momentum Distributions of Trapped One-Dimensional Atomic Gases

    Full text link
    We derive exact closed form expressions for the first few terms of the short-distance Taylor expansion of the one-body correlation function of the Lieb-Liniger gas. As an intermediate result we obtain the high-p asymptotics of the momentum distribution of both free and harmonically trapped atoms and show that it obeys a universal 1/p^4 law for_all_ values of the interaction strength. We discuss the ways to observe the predicted momentum distributions experimentally, regarding them as a sensitive identifier for the Tonks-Girardeau regime of strong correlations.Comment: A significant misprint in the definition of c_2 is corrected. 5 pages, 1 EPS figure, references update

    Bosons in cigar-shape traps: Thomas-Fermi regime, Tonks-Girardeau regime, and between

    Full text link
    We present a quantitative analysis of the experimental accessibility of the Tonks-Girardeau gas in the current day experiments with cigar-trapped alkalis. For this purpose we derive, using a Bethe anzats generated local equation of state, a set of hydrostatic equations describing one-dimensional delta-interacting Bose gases trapped in a harmonic potential. The resulting solutions cover the_entire range_ of atomic densities.Comment: 4 pages, 4 figure

    The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions

    Full text link
    We show that the Lieb-Liniger model for one-dimensional bosons with repulsive δ\delta-function interaction can be rigorously derived via a scaling limit from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite scattering length. For this purpose, we prove bounds on both the eigenvalues and corresponding eigenfunctions of three-dimensional bosons in strongly elongated traps and relate them to the corresponding quantities in the Lieb-Liniger model. In particular, if both the scattering length aa and the radius rr of the cylindrical trap go to zero, the Lieb-Liniger model with coupling constant g∼a/r2g \sim a/r^2 is derived. Our bounds are uniform in gg in the whole parameter range 0≤g≤∞0\leq g\leq \infty, and apply to the Hamiltonian for three-dimensional bosons in a spectral window of size ∼r−2\sim r^{-2} above the ground state energy.Comment: LaTeX2e, 19 page

    Bose-Fermi variational theory of the BEC-Tonks crossover

    Full text link
    A number-conserving hybrid Bose-Fermi variational theory is developed and applied to investigation of the BEC-Tonks gas crossover in toroidal and long cylindrical traps of high aspect ratio, where strong many-body correlations and condensate depletion occur.Comment: 4 pages RevTeX including 2 figures, uses epsfig. Submitted to Phys. Rev. Let
    corecore