22,107 research outputs found

    Jet noise from co-axial nozzles over a wide range of geometric and flow parameters

    Get PDF
    Free field pure jet noise data were taken for a large range of coaxial nozzle configurations. The core nozzles were circular (1 to 4 in. diameter) and plug types. The fan to core area ratio varied from 0.7 to 43.5, while the velocity ratio typically varied from 0 to 1. For most cases the two nozzles were coplanar but large axial extensions of either nozzle were also tested. Correlation of the data resulted in a simple procedure for estimating ambient temperature subsonic coaxial jet noise spectra over a wide range of geometric and flow parameters

    Turbulence spectra in the noise source regions of the flow around complex surfaces

    Get PDF
    The complex turbulent flow around three complex surfaces was measured in detail with a hot wire. The measured data include extensive spatial surveys of the mean velocity and turbulence intensity and measurements of the turbulence spectra and scale length at many locations. The publication of the turbulence data is completed by reporting a summary of the turbulence spectra that were measured within the noise source locations of the flow. The results suggest some useful simplifications in modeling the very complex turbulent flow around complex surfaces for aeroacoustic predictive models. The turbulence spectra also show that noise data from scale models of moderate size can be accurately scaled up to full size

    Flap noise and aerodynamic results for model QCSEE over-the-wing configurations

    Get PDF
    Noise spectra in three dimensions and aerodynamic data were measured for a model of the NASA quiet clean short-haul experimental engine (QCSEE) over-the-wing configuration. The effects of flap length, nozzle exhaust velocity, and nozzle geometry were determined using a single nozzle and wing-flap segment. The scaled-up model data is representative of full scale flap noise with the QCSEE engine

    Ice shapes and the resulting drag increase for a NACA 0012 airfoil

    Get PDF
    Experimental measurements of the ice shapes and resulting drag increases were measured in the NASA-Lewis Icing Research Tunnel. The measurements were made over a large range of conditions (e.g., airspeed and temperature, drop size and liquid water content of the cloud, and the angle of attack of the airfoil). The measured drag increase did not agree with the existing correlation. Additional results were given which are helpful in understanding the ice structure and the way it forms, and in improving the ice accretion modeling theories. There are data on the ice surface roughness, on the effect of the ice shape on the local droplet catch, and on the relative importance of various parts of the ice shape on the drag increase. Experimental repeatability is also discussed

    Effects of heat input rates on T-1 and T-1A steel welds

    Get PDF
    Technology of T-1 and T-1A steels is emphasized in investigation of their weld-fabrication. Welding heat input rate, production weldment circumstances, and standards of welding control are considered

    Flap noise measurements for STOL configurations using external upper surface blowing

    Get PDF
    Screening tests of upper surface blowing on externally blown flaps configurations were conducted. Noise and turning effectiveness data were obtained with small-scale, engine-over-the-wing models. One large model was tested to determine scale effects. Nozzle types included circular, slot, D-shaped, and multilobed. Tests were made with and without flow attachment devices. For STOL applications the particular multilobed mixer and the D-shaped nozzles tested were found to offer little or no noise advantage over the round convergent nozzle. High aspect ratio slot nozzles provided the quietest configurations. In general, upper surface blowing was quieter than lower surface blowing for equivalent EBF models

    Effect of simulated forward airspeed on small-scale-model externally blown flap noise

    Get PDF
    Noise tests were conducted on a small-scale model of an externally blown flap lift augmentation system. The nozzle/wing model was subjected to external flow that simulated takeoff and landing flight velocities by placing it in a 33-centimeter-diameter free jet. The results showed that external flow attenuated the noise associated with the various configurations tested. The amount of attenuation depended on flap setting. More attenuation occurred with a trailing-flap setting of 20 deg than with one of 60 deg. Noise varied with relative velocity as a function of the trailing-flap setting and the angle from the nozzle inlet

    Noise produced by a small-scale, externally blown flap

    Get PDF
    Noise data were obtained with a model of an externally blown flap of the type that is currently being considered for STOL aircraft. The noise caused by impingement of the jet on the flap is much louder than the nozzle jet noise. It is especially so directly below the wing. The noise level increases as the jet velocity and flap angle are increased. The sound power level increased with the sixth power of velocity. Several physical variations to the STOL model configuration were also tested. Two such variations, a large board and a slotless curved plate wing, had the same power spectra density (Strouhal number curve) as the model
    corecore