29,419 research outputs found
Tripartite entanglement from interlinked parametric interactions
We examine the tripartite entanglement properties of an optical system using
interlinked interactions, recently studied experimentally in terms
of its phase-matching properties by Bondani et al [M. Bondani, A. Allevi, E.
Gevinti, A. Agliati, and A. Andreoni, arXiv:quant-ph/0604002.]. We show that
the system does produce output modes which are genuinely tripartite entangled
and that detection of this entanglement depends crucially on the correlation
functions which are measured, with a three-mode Einstein-Podolsky-Rosen
inequality being the most sensitive.Comment: 15 pages, 5 figure
Experimental comparison of icing cloud instruments
Icing cloud instruments were tested in the spray cloud Icing Research Tunnel (IRT) in order to determine their relative accuracy and their limitations over a broad range of conditions. It was found that the average of the readings from each of the liquid water content (LWC) instruments tested agreed closely with each other and with the IRT calibration; but all have a data scatter (+ or - one standard deviation) of about + or - 20 percent. The effect of this + or - 20 percent uncertainty is probably acceptable in aero-penalty and deicer experiments. Existing laser spectrometers proved to be too inaccurate for LWC measurements. The error due to water runoff was the same for all ice accretion LWC instruments. Any given laser spectrometer proved to be highly repeatable in its indications of volume median drop size (DVM), LWC and drop size distribution. However, there was a significant disagreement between different spectrometers of the same model, even after careful standard calibration and data analysis. The scatter about the mean of the DVM data from five Axial Scattering Spectrometer Probes was + or - 20 percent (+ or - one standard deviation) and the average was 20 percent higher than the old IRT calibration. The + or - 20 percent uncertainty in DVM can cause an unacceptable variation in the drag coefficient of an airfoil with ice; however, the variation in a deicer performance test may be acceptable
Quantum field effects in coupled atomic and molecular Bose-Einstein condensates
This paper examines the parameter regimes in which coupled atomic and
molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation.
Stochastic field equations for coupled atomic and molecular condensates are
derived using the functional positive-P representation. These equations
describe the full quantum state of the coupled condensates and include the
commonly used Gross-Pitaevskii equation as the noiseless limit. The model
includes all interactions between the particles, background gas losses,
two-body losses and the numerical simulations are performed in three
dimensions. It is found that it is possible to differentiate the quantum and
semiclassical behaviour when the particle density is sufficiently low and the
coupling is sufficiently strong.Comment: 4 postscript figure
The pros and cons of using SDL for creation of distributed services
In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation
Neutron activation analysis traces copper artifacts to geographical point of origin
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact
Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K
A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was
produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing
the spatial distribution of the gases after time-of-flight expansion. Further,
the magnitude of the interspecies scattering length between the doubly spin
polarized states of 87Rb and 40K, |a_RbK|, was determined from
cross-dimensional thermal relaxation. The uncertainty in this collision
measurement was greatly reduced by taking the ratio of interspecies and
intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a
lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68,
043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory
would predict a threshold for mechanical instability that is inconsistent with
the experimentally observed onset for sudden loss of fermions in [G. Modugno et
al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
Recent experimental measurements of atomic intensity correlations through
atom shot noise suggest that atomic quadrature phase correlations may soon be
measured with a similar precision. We propose a test of local realism with
mesoscopic numbers of massive particles based on such measurements. Using
dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic
atoms, we demonstrate that strongly entangled atomic beams may be produced
which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures,
in direct analogy to the position and momentum correlations originally
considered by EPR.Comment: Final published version (corrections in Ref. [32], updated
references
Airloads research study. Volume 2: Airload coefficients derived from wind tunnel data
The development of B-1 aircraft rigid wind tunnel data for use in subsequent tasks of the Airloads Research Study is described. Data from the Rockwell International external structural loads data bank were used to generate coefficients of rigid airload shear, bending moment, and torsion at specific component reference stations or both symmetric and asymmetric loadings. Component stations include the movable wing, horizontal and vertical stabilizers, and forward and aft fuselages. The coefficient data cover a Mach number range from 0.7 to 2.2 for a wing sweep position of 67.5 degree
Airloads research study. Volume 1: Flight test loads acquisition
The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg
The protein import apparatus of chloroplasts
Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle
- …