977 research outputs found

    A non-monotonic constitutive model is not necessary to obtain shear banding phenomena in entangled polymer solutions

    Get PDF
    In 1975 Doi and Edwards predicted that entangled polymer melts and solutions can have a constitutive instability, signified by a decreasing stress for shear rates greater than the inverse of the reptation time. Experiments did not support this, and more sophisticated theories incorporated Marrucci's idea (1996) of removing constraints by advection; this produced a monotonically increasing stress and thus stable constitutive behavior. Recent experiments have suggested that entangled polymer solutions may possess a constitutive instability after all, and have led some workers to question the validity of existing constitutive models. In this Letter we use a simple modern constitutive model for entangled polymers, the non-stretching Rolie-Poly model with an added solvent viscosity, and show that (1) instability and shear banding is captured within this simple class of models; (2) shear banding phenomena is observable for weakly stable fluids in flow geometries that impose a sufficiently inhomogeneous total shear stress; (3) transient phenomena can possess inhomogeneities that resemble shear banding, even for weakly stable fluids. Many of these results are model-independent.Comment: 5 figure

    Unfolding dynamics of proteins under applied force

    Get PDF
    Understanding the mechanisms of protein folding is a major challenge that is being addressed effectively by collaboration between researchers in the physical and life sciences. Recently, it has become possible to mechanically unfold proteins by pulling on their two termini using local force probes such as the atomic force microscope. Here, we present data from experiments in which synthetic protein polymers designed to mimic naturally occurring polyproteins have been mechanically unfolded. For many years protein folding dynamics have been studied using chemical denaturation, and we therefore firstly discuss our mechanical unfolding data in the context of such experiments and show that the two unfolding mechanisms are not the same, at least for the proteins studied here. We also report unexpected observations that indicate a history effect in the observed unfolding forces of polymeric proteins and explain this in terms of the changing number of domains remaining to unfold and the increasing compliance of the lengthening unstructured polypeptide chain produced each time a domain unfolds

    Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature

    Full text link
    We consider the demixing of a binary fluid mixture, under gravity, which is steadily driven into a two phase region by slowly ramping the temperature. We assume, as a first approximation, that the system remains spatially isothermal, and examine the interplay of two competing nonlinearities. One of these arises because the supersaturation is greatest far from the meniscus, creating inversion of the density which can lead to fluid motion; although isothermal, this is somewhat like the Benard problem (a single-phase fluid heated from below). The other is the intrinsic diffusive instability which results either in nucleation or in spinodal decomposition at large supersaturations. Experimental results on a simple binary mixture show interesting oscillations in heat capacity and optical properties for a wide range of ramp parameters. We argue that these oscillations arise under conditions where both nonlinearities are important

    Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics

    Full text link
    We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic properties such as shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte

    The Johnson-Segalman model with a diffusion term in Couette flow

    Full text link
    We study the Johnson-Segalman (JS) model as a paradigm for some complex fluids which are observed to phase separate, or ``shear-band'' in flow. We analyze the behavior of this model in cylindrical Couette flow and demonstrate the history dependence inherent in the local JS model. We add a simple gradient term to the stress dynamics and demonstrate how this term breaks the degeneracy of the local model and prescribes a much smaller (discrete, rather than continuous) set of banded steady state solutions. We investigate some of the effects of the curvature of Couette flow on the observable steady state behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog

    Equilibrium onions?

    Get PDF
    We demonstrate the possibility of a stable equilibrium multi-lamellar ("onion") phase in pure lamellar systems (no excess solvent) due to a sufficiently negative Gaussian curvature modulus. The onion phase is stabilized by non-linear elastic moduli coupled to a polydisperse size distribution (Apollonian packing) to allow space-filling without appreciable elastic distortion. This model is compared to experiments on copolymer-decorated lamellar surfactant systems, with reasonable qualitative agreement

    Loss of solutions in shear banding fluids in shear banding fluids driven by second normal stress differences

    Full text link
    Edge fracture occurs frequently in non-Newtonian fluids. A similar instability has often been reported at the free surface of fluids undergoing shear banding, and leads to expulsion of the sample. In this paper the distortion of the free surface of such a shear banding fluid is calculated by balancing the surface tension against the second normal stresses induced in the two shear bands, and simultaneously requiring a continuous and smooth meniscus. We show that wormlike micelles typically retain meniscus integrity when shear banding, but in some cases can lose integrity for a range of average applied shear rates during which one expects shear banding. This meniscus fracture would lead to ejection of the sample as the shear banding region is swept through. We further show that entangled polymer solutions are expected to display a propensity for fracture, because of their much larger second normal stresses. These calculations are consistent with available data in the literature. We also estimate the meniscus distortion of a three band configuration, as has been observed in some wormlike micellar solutions in a cone and plate geometry.Comment: 23 pages, to be published in Journal of Rheolog

    Adams and Olmsted Reply to comment on article "A non-monotonic constitutive model is not necessary to obtain shear banding phenomena in entangled polymer solution" [Phys. Rev. Lett. 102, 067801 (2009), arXiv:0805.0679]

    Get PDF
    Wang [Phys. Rev. Lett. 103, 219801 (2009)] makes the following points about our Letter [Phys. Rev. Lett. 102, 067801 (2009), arXiv:0805.0679]: (1) He infers that, "contrary to its title, shear banding emerged from monotonic curves only if there was a stress gradient", and he points out that nonquiescent relaxation was found (experimentally) after step strain in geometries without a stress gradient. (2) He disagrees with the values of the parameters we used. (3) In some recent experiments the flow was homogeneous after cessation of step strain, and only subsequently developed nonquiescent macroscopic motion. We only showed step strains that developed an inhomogeneity before cessation of flow. In this reply we address these points.Comment: Reply to Comment of S.-Q. Wang, Phys. Rev. Lett. 103, 219801 (2009

    Imprinted Networks as Chiral Pumps

    Full text link
    We investigate the interaction between a chirally imprinted network and a solvent of chiral molecules. We find, a liquid crystalline polymer network is preferentially swollen by one component of a racemic solvent. This ability to separate is linked to the chiral order parameter of the network, and can be reversibly controlled via temperature or a mechanical deformation. It is maximal near the point at which the network loses its imprinted structure. One possible practical application of this effect would be a mechanical device for sorting mixed chiral molecules.Comment: 4 pages, 5 figure

    The physical determinants of the thickness of lamellar polymer crystals

    Full text link
    Based upon kinetic Monte Carlo simulations of crystallization in a simple polymer model we present a new picture of the mechanism by which the thickness of lamellar polymer crystals is constrained to a value close to the minimum thermodynamically stable thickness. This description contrasts with those given by the two dominant theoretical approaches.Comment: 4 pages, 4 figures, revte
    • …
    corecore