25 research outputs found

    Surveys of Arboviruses Vectors in Four Cities Stretching Along a Railway Transect of Burkina Faso: Risk Transmission and Insecticide Susceptibility Status of Potential Vectors

    Get PDF
    Background: A severe outbreak of dengue occurred in Burkina Faso in 2016, with the most cases reported in Ouagadougou, that highlights the necessity to implement vector surveillance system. This study aims to estimate the risk of arboviruses transmission and the insecticide susceptibility status of potential vectors in four sites in Burkina Faso.Methods: From June to September 2016, house-to-house cross sectional entomological surveys were performed in four cities stretching along a southwest-to-northeast railway transect. The household surveys analyzed the presence of Aedes spp. larvae in containers holding water and the World Health Organization (WHO) larval abundance indices were estimated. WHO tube assays was used to evaluate the insecticide susceptibility within Aedes populations from these localities.Results: A total of 31,378 mosquitoes' larvae were collected from 1,330 containers holding water. Aedes spp. was the most abundant (95.19%) followed by Culex spp. (4.75%). Aedes aegypti a key vector of arboviruses (ARBOV) in West Africa was the major Aedes species found (98.60%). The relative larval indices, house index, container and Breteau indexes were high, up to 70, 35, and 10, respectively. Aedes aegypti tended to breed mainly in discarded tires and terracotta jars. Except in Banfora the western city, Ae. aegypti populations were resistant to deltamethrin 0.05% in the other localities with low mortality rate under 20% in Ouagadougou whereas they were fully susceptible to malathion 5% whatever the site. Intermediate resistance was observed in the four sites with mortality rates varying between 78 and 94% with bendiocarb 0.1%.Conclusions: This study provided basic information on entomological indices that can help to monitor the risks of ARBOV epidemics in the main cities along the railway in Burkina Faso. In these cities, all larval indices exceeded the risk level of ARBOV outbreak. Aedes aegypti the main species collected was resistant to deltamethrin 0.05% and bendiocarb 0.1% whereas they were fully susceptible to malathion 5%. The monitoring of insecticide resistance is also important to be integrated to the vector surveillance system in Burkina Faso

    Essential Oils as an Alternative to Pyrethroids’ Resistance against Anopheles Species Complex Giles (Diptera: Culicidae)

    No full text
    Widespread resistance of Anopheles sp. populations to pyrethroid insecticides has led to the search for sustainable alternatives in the plant kingdom. Among many botanicals, there is great interest in essential oils and their constituents. Many researchers have explored essential oils (EOs) to determine their toxicity and identify repellent molecules that are effective against Anopheles populations. Essential oils are volatile and fragrant substances with an oily consistency typically produced by plants. They contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components at quite different concentrations with a significant insecticide potential, essentially as ovicidal, larvicidal, adulticidal, repellency, antifeedant, growth and reproduction inhibitors. The current review provides a summary of chemical composition of EOs, their toxicity at different developmental stages (eggs, larvae and adults), their repellent effects against Anopheles populations, for which there is little information available until now. An overview of antagonist and synergistic phenomena between secondary metabolites, the mode of action as well as microencapsulation technologies are also given in this review. Finally, the potential use of EOs as an alternative to current insecticides has been discussed

    Analyses of symbiotic bacterial communities in the plant pest Bemisia tabaci reveal high prevalence of Candidatus Hemipteriphilus asiaticus on the African continent

    Get PDF
    International audienceMicrobial symbionts are widespread in insects and some of them have been associated to adaptive changes. Primary symbionts (P-symbionts) have a nutritional role that allows their hosts to feed on unbalanced diets (plant sap, wood, blood). Most of them have undergone genome reduction, but their genomes still retain genes involved in pathways that are necessary to synthesize the nutrients that their hosts need. However, in some P-symbionts, essential pathways are incomplete and secondary symbionts (S-symbionts) are required to complete parts of their degenerated functions. The P-symbiont of the phloem sap-feeder Bemisia tabaci, Candidatus Portiera aleyrodidarium, lacks genes involved in the synthesis of vitamins, cofactors, and also of some essential amino-acids. Seven S-symbionts have been detected in the B. tabaci species complex. Phenotypic and genomic analyses have revealed various effects, from reproductive manipulation to fitness benefits, notably some of them have complementary metabolic capabilities to Candidatus Portiera aleyrodidarium, suggesting that their presence may be obligatory. In order to get the full picture of the symbiotic community of this pest, we investigated, through metabarcoding approaches, the symbiont content of individuals from Burkina Faso, a West African country where B. tabaci induces severe crop damage. While no new putative B. tabaci S-symbiont was identified, Candidatus Hemipteriphilus asiaticus, a symbiont only described in B. tabaci populations from Asia, was detected for the first time on this continent. Phylogenetic analyses however reveal that it is a different strain than the reference found in Asia. Specific diagnostic PCRs showed a high prevalence of these S-symbionts and especially of Candidatus Hemipteriphilus asiaticus in different genetic groups. These results suggest that Candidatus Hemipteriphilus asiaticus may affect the biology of B. tabaci and provide fitness advantage in some B. tabaci populations

    Sex aggregation and species segregation cues in swarming mosquitoes : role of ground visual markers

    No full text
    Background: Mating swarm segregation in closely related insect species may contribute to reproductive isolation. Visual markers are used for swarm formation; however, it is unknown whether they play a key role in swarm location, species segregation and sex aggregation. Methods: Using two sympatric closely related species of the Anopheles gambiae complex, An. coluzzii and An. gambiae (s.s.), we investigated in both laboratory and semi-field conditions (i) whether males of the two species use visual markers (black cloths) to locate their swarm; and (ii) whether the presence/absence and size of the marker may differentially affect swarm characteristics. We also investigated whether conspecific virgin females use these markers to join male swarm sites. Results: We showed that males of the two species used visual markers but in different ways: An. coluzzii swarm right above the marker whereas An. gambiae (s.s.) locate their swarm at a constant distance of 76.4 +/- 0.6 cm from a 20 x 20 cm marker in the laboratory setup and at 206 +/- 6 cm from a 60 x 60 cm marker in the semi-field setup. Although increased marker size recruited more mosquitoes and consequently increased the swarm size in the two species, An. coluzzii swarms flew higher and were stretched both vertically and horizontally, while An. gambiae (s.s.) swarms were only stretched horizontally. Virgin females displayed a swarm-like behavior with similar characteristics to their conspecific males. Conclusions: Our results provided experimental evidence that both An. coluzzii and An. gambiae (s.s.) males use ground visual markers to form and locate their swarm at species-specific locations. Moreover, the marker size differentially affected swarm characteristics in the two species. Our results also showed that virgin females displayed a swarm-like behavior. However, these "swarms" could be due to the absence of males in our experimental conditions. Nevertheless, the fact that females displayed these "swarms" with the same characteristics as their respective males provided evidence that visual markers are used by the two sexes to join mating spots. Altogether, this suggests that visual markers and the way species and sexes use them could be key cues in species segregation, swarm location and recognition

    Pollination syndrome of the African custard apple (Annona senegalensis Pers.) reveals reliance on specialized brood-site weevil pollinators in Annonaceae

    No full text
    International audienceThe pollination syndrome of the African custard apple (Annona senegalensis Pers.; Annonaceae) was investigated to gain insights into the reproductive strategy of this multipurpose wild shrub. Flower visitors were collected and frequently surveyed in the morning on 30 flowers of 30 plants per site, at four sites across the Sudanian and Sudano-Sahelian climatic zones of Burkina Faso during the flowering season, from May to June. A total of nine species of insects including Coleoptera (Curculionidae, Scarabeidae), Hymenoptera (Formicidae) and Diptera (Tephritidae) were observed visiting flowers. Among the recorded insects, two sympatric species of weevil (Curculioninae, Ochyromerini, Endaeus castus Schoenherr and Endaeus floralis Marshall) were by far the most abundant (97% of specimens) and were observed on all the 120 flowers sampled. Both species were observed on the fleshy petals of the cantharophilous flowers of Annona senegalensis that they use as substrate for the development of larval stages. These observations echo with the ever-growing number of researches highlighting the major role of weevils in the pollination of the pantropical Annonaceae. Our study provides first evidence of brood-site mutualism between an Annonaceae species and its specialized weevils pollinators

    Detection of genetically isolated entities within the Mediterranean species of Bemisia tabaci: new insights into the systematics of this worldwide pest

    Get PDF
    International audienceBACKGROUNDThe taxonomy of the species complex Bemisia tabaci, a serious agricultural pest worldwide, is not well resolved yet, even though species delimitation is critical for designing effective control strategies. Based on a threshold of 3.5% mitochondrial (mtCOI) sequence divergence, recent studies have identified 28 putative species. Among them, mitochondrial variability associated with particular symbiotic compositions (=cytotypes) can be observed, as in MED, which raises the question of whether it is a single or a complex of biological species.RESULTSUsing microsatellites, an investigation was made of the genetic relatedness of Q1 and ASL cytotypes that belong to MED. Samples of the two cytotypes were collected in West Africa where they live in sympatry on the same hosts. Genotyping revealed a high level of differentiation, without evidence of gene flow. Moreover, they differed highly in frequencies of resistance alleles to insecticides, which were much higher in Q1 than in ASL.CONCLUSIONQ1 and ASL are sufficiently reproductively isolated for the introgression of neutral alleles to be prevented, suggesting that they are actually different species. This indicates that nuclear genetic differentiation must be investigated within groups with less than 3.5% mtCOI divergence in order to elucidate the taxonomy of B. tabaci at a finer level. Overall, these data provide important information for pest management

    Nutritional and Functional Properties of Defatted Flour, Protein Concentrates, and Isolates of Brachytrupes membranaceus (Orthoptera: Gryllidae) (Drury: 1773) and Macrotermes subhyalinus (Isoptera: Blattodea) (Rambur: 1842) from Burkina Faso

    No full text
    Brachytrupes membranaceus and Macrotermes subhyalinus are edible insects in Burkina Faso. Our research aimed to evaluate the nutritional composition and functional properties of the defatted flours, protein concentrates, and isolates of Brachytrupes membranaceus and Macrotermes subhyalinus. Proximate and mineral composition were determined according to AOAC methods. The amino acid and fatty acid composition were determined by high-performance liquid chromatography (HPLC) and gas chromatography, respectively. The protein concentrates and isolates were obtained by solubilization, precipitation, and lyophilization. Macrotermes subhyalinus showed the highest protein (45.75 g/100 g), iron (11.76 mg/100 g), and zinc (13.18 mg/100 g) contents. The highest isoleucine and lysine contents, the best fat absorption (10.87 g/g), and foaming capacities (49.60%) were obtained with the isolate of Brachytrupes membranaceus. Consumption of Macrotermes subhyalinus could be used to fight or correct iron and zinc deficiencies. Macrotermes subhyalinus was a source of macronutrients and micronutrients, while the protein concentrates and isolates of Brachytrupes membranaceus were endowed with functional properties (fat absorption and foaming capacities)

    Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa.

    No full text
    Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC) and biological cotton (BC) growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead) were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC) growing sites compared to that from conventional cotton (WCC) sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75%) and a wild-type strain (49.75% vs 66.5%). The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests) of the role of agriculture as a source of selection pressure on vectors to insecticides used in growing areas

    Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae)

    No full text
    Abstract Background Larval nutrition, particularly diet quality, is a key driver in providing sufficient numbers of high quality mosquitoes for biological control strategies such as the sterile insect technique. The diet currently available to mass rear Anopheles arabiensis, referred here to as the “IAEA diet”, is facing high costs and difficulties concerning the availability of the bovine liver powder component. To promote more affordable and sustainable mosquito production, the present study aimed to find alternative diet mixtures. Eight cheaper diet mixtures comprised of varying proportions of tuna meal (TM), bovine liver powder (BLP), brewer’s yeast (BY), and chickpea (CP) were developed and evaluated through a step by step assessment on An. arabiensis larvae and adult life history traits, in comparison to the IAEA diet which served as a basis and standard. Results Four mixtures were found to be effective regarding larval survival to pupation and to emergence, egg productivity, adult body size and longevity. These results suggest that these different diet mixtures have a similar nutritional value that support the optimal development of An. arabiensis larvae and enhance adult biological quality and production efficiency, and thus could be used for mass rearing. Conclusions Our study demonstrated that four different diet mixtures, 40 to 92% cheaper than the IAEA diet, can result in a positive assessment of the mosquitoes’ life history traits, indicating that this mosquito species can be effectively mass reared with a significant reduction in costs. The mixture comprised of TM + BY + CP is the preferred choice as it does not include BLP and thus reduces the cost by 92% compared to the IAEA diet
    corecore