157 research outputs found

    Asset Quality Review and Stress Test Exercise

    Get PDF

    BANK OF SPAIN STRESS TESTING EXERCISE

    Get PDF

    Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes

    Get PDF
    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts ofEscherichia coliin dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantifiedE. coliwas recorded between the qPCR and culture-based methods (r= 0.82). Evaluation of the persistence profiles ofE. coliover time revealed no significant difference in theE. colinumbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts ofE. colifor the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viableE. colipopulations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather

    第7章 平成22年度~24年度特別研究 : 「地域歴史遺産保全活用教育研究を基軸とした地域歴史文化育成支援拠点の整備」事業

    Get PDF
    textabstractThe Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pediatric cancer patients with enhanced ataxia telangiectasia-like disorder. Purified human Mre11-W243R retains nuclease and DNA binding activities in vitro. X-ray crystallography of Pyrococcus furiosus Mre11 indicates that an analogous mutation leaves the overall Mre11 threedimensional structure and nuclease sites intact but disorders surface loops expected to regulate DNA and Rad50 interactions. The equivalent W248R allele in fission yeast allows Mre11 to form an MRN complex that efficiently binds double-strand breaks, activates Tel1/ATM and maintains telomeres; yet, it causes hypersensitivity to ionizing radiation and collapsed replication forks, increased Rad52 foci, defective Chk1 signaling and meiotic failure. W248R differs from other ataxia telangiectasia-like disorder analog alleles by the reduced stability of its interaction with Rad50 in cell lysates. Collective results suggest a separation-of-function mutation that disturbs interactions amongst the MRN subunits and Ctp1 required for DNA end processing in vivo but maintains interactions sufficient for Tel1/ATM checkpoint and telomere maintenance functions

    Systematic Error in Seed Plant Phylogenomics

    Get PDF
    Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny

    Risk Governance Guidelines for Unconventional Gas Development

    Get PDF
    Based on concerns that unconventional gas development is occurring despite much uncertainty about its potential impacts on the environment, climate, economy and society the IRGC offers recommendations relating to assessing and managing risks involved in the development of this resource. The goal is that by applying these recommended actions, risks will be significantly reduced while the benefits of utilizing this newly available resource will be strengthened

    Hyperexpression of the X Chromosome in Both Sexes Results in Extensive Female Bias of X-Linked Genes in the Flour Beetle

    Get PDF
    A genome's ability to produce two separate sexually dimorphic phenotypes is an intriguing biological mystery. Microarray-based studies of a handful of model systems suggest that much of the mystery can be explained by sex-biased gene expression evolved in response to sexually antagonistic selection. We present the first whole-genome study of sex-biased expression in the red flour beetle, Tribolium castaneum. Tribolium is a model for the largest eukaryotic order, Coleoptera, and we show that in whole-body adults, ∼20% of the transcriptome is differentially regulated between the sexes. Among T. castaneum, Drosophila melanogaster, and Anopheles gambiae, we identify 416 1:1:1 orthologs with conserved sex-biased expression. Overrepresented functional categories among sex-biased genes are primarily those involved in gamete production and development. The genomic distribution of sex-biased genes in T. castaneum is distinctly nonrandom, with the strongest deficit of male-biased genes on the X chromosome (9 of 793) of any species studied to date. Tribolium also shows a significant enrichment of X-linked female-biased genes (408 of 793). Our analyses suggest that the extensive female bias of Tribolium X chromosome gene expression is due to hyperexpression of X-linked genes in both males and females. We propose that the overexpression of X chromosomes in females is an evolutionary side effect of the need to dosage compensate in males and that mechanisms to reduce female X chromosome gene expression to autosomal levels are sufficient but imperfect

    Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review

    Get PDF
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems

    Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination <it>proportional </it>to the population at each point in time.</p> <p>Methods</p> <p>We present a SIR-like model that explicitly takes into account vaccine supply and the <it>number </it>of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the <it>non-proportional </it>model of vaccination and compare it to the proportional scheme typically found in the literature.</p> <p>Results</p> <p>The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.</p> <p>Conclusions</p> <p>The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.</p
    corecore