4,012 research outputs found

    Migratory bats are sensitive to magnetic inclination changes during the compass calibration period

    Get PDF
    The Earth's magnetic field is used as a navigational cue by many animals. For mammals, however, there are few data to show that navigation ability relies on sensing the natural magnetic field. In night-time migrating bats, experiments demonstrating a role for the solar azimuth at sunset in the calibration of the orientation system suggest that the magnetic field is a candidate for their compass. Here, we investigated how an altered magnetic field at sunset changes the nocturnal orientation of the bat Pipistrellus pygmaeus. We exposed bats to either the natural magnetic field, a horizontally shifted field (120°), or the same shifted field combined with a reversal of the natural value of inclination (70° to -70°). We later released the bats and found that the take-off orientation differed among all treatments. Bats that were exposed to the 120° shift were unimodally oriented northwards in contrast to controls which exhibited a bimodal north-south distribution. Surprisingly, the orientation of bats exposed to both a 120° shift and reverse inclination was indistinguishable from a uniform distribution. These results suggest that these migratory bats calibrate the magnetic field at sunset, and for the first time, they show that bats are sensitive to the angle of magnetic inclination.</p

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts

    Nonlinear resonant behavior of the dispersive readout scheme for a superconducting flux qubit

    Full text link
    A nonlinear resonant circuit comprising a SQUID magnetometer and a parallel capacitor is studied as a readout scheme for a persistent-current (PC) qubit. The flux state of the qubit is detected as a change in the Josephson inductance of the SQUID magnetometer, which in turn mediates a shift in the resonance frequency of the readout circuit. The nonlinearity and resulting hysteresis in the resonant behavior are characterized as a function of the power of both the input drive and the associated resonance peak response. Numerical simulations based on a phenomenological circuit model are presented which display the features of the observed nonlinearity.Comment: 9 pages, 9 figure

    6DOF Testing of the SLS Inertial Navigation Unit

    Get PDF
    The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation

    Treatment recommendations for psoriatic arthritis

    Get PDF
    Objective: To develop comprehensive recommendations for the treatment of the various clinical manifestations of psoriatic arthritis (PsA) based on evidence obtained from a systematic review of the literature and from consensus opinion. Methods: Formal literature reviews of treatment for the most significant discrete clinical manifestations of PsA (skin and nails, peripheral arthritis, axial disease, dactylitis and enthesitis) were performed and published by members of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA). Treatment recommendations were drafted for each of the clinical manifestations by rheumatologists, dermatologists and PsA patients based on the literature reviews and consensus opinion. The level of agreement for the individual treatment recommendations among GRAPPA members was assessed with an online questionnaire. Results: Treatment recommendations were developed for peripheral arthritis, axial disease, psoriasis, nail disease, dactylitis and enthesitis in the setting of PsA. In rotal, 19 recommendations were drafted, and over 80% agreement was obtained on 16 of them. In addition, a grid that factors disease severity into each of the different disease manifestations was developed to help the clinician with treatment decisions for the individual patient from an evidenced-based perspective. Conclusions: Treatment recommendations for the cardinal physical manifestations of PsA were developed based on a literature review and consensus between rheumatologists and dermatologists. In addition, a grid was established to assist in therapeutic reasoning and decision making for individual patients. It is anticipated that periodic updates will take place using this framework as new data become available

    Temporal response of an injectable calcium phosphate material in a critical size defect

    Get PDF
    BACKGROUND: Calcium phosphate-based bone graft substitutes are used to facilitate healing in bony defects caused by trauma or created during surgery. Here, we present an injectable calcium phosphate-based bone void filler that has been purposefully formulated with hyaluronic acid to offer a longer working time for ease of injection into bony defects that are difficult to access during minimally invasive surgery. METHODS: The bone substitute material deliverability and physical properties were characterized, and in vivo response was evaluated in a critical size distal femur defect in skeletally mature rabbits to 26 weeks. The interface with the host bone, implant degradation, and resorption were assessed with time. RESULTS: The calcium phosphate bone substitute material could be injected as a paste within the working time window of 7-18 min, and then self-cured at body temperature within 10 min. The material reached a maximum ultimate compressive strength of 8.20 +/- 0.95 MPa, similar to trabecular bone. The material was found to be biocompatible and osteoconductive in vivo out to 26 weeks, with new bone formation and normal bone architecture observed at 6 weeks, as demonstrated by histological evaluation, microcomputed tomography, and radiographic evaluation. CONCLUSIONS: These findings show that the material properties and performance are well suited for minimally invasive percutaneous delivery applications

    Molecular Identification of Synanthedonini Members (Lepidoptera: Sesiidae) Using Cytochrome Oxidase I

    Get PDF
    Many North American sesiid moths within Synanthodonini have been studied extensively because their feeding activity can cause detrimental economic and esthetic impacts to many commercially important ornamental and native plant species. Recent discoveries of nonnative clearwing moth pest introductions [e.g., Synanthedon myopaeformis (Borkh.)], reinforce the need for reliable and accurate molecular diagnostic tools that can be used by nontaxonomic experts, particularly when juvenile life stages are recovered from infested host-plant tissues. Cytochrome oxidase I (cox I) previously has been used to successfully identify species and resolve species complexes. In this study, the cox I phylogeny inferred from sequences generated from 21 species of sesiid moths classified within Synanthedonini confirms the close evolutionary relationship between sesiid species. As other authors have suggested in previous works, we observed that Synanthedon rileyana H. Edwards appears atypical for the genus, as it paired with Carmenta bassiformis (Walker) one node removed from, but not sister to, a large well-supported Synanthedon-rich clade. Sannina uroceriformis Walker and Podosesia MXöschler were observed nested deeply within the aforementioned well-supported clade (posterior probability [PP] of clade = 100) comprised of all Synanthedon species sampled, except S. rileyana. Placement of these two taxa conflicts with results from previous morphological studies. These placements were immune from repeated attempts to delete perceived nearby long branches within the data set. Despite these few conflicts and overall low statistical support for most interspecific and higher relationships, our data suggest that all species examined possess unique genetic signatures that lend themselves to accurate identification of all life history stages of these clearwing pests
    • …
    corecore