1,857 research outputs found

    Radiation-induced rotation of small celestial bodies

    Get PDF
    The rotation was studied of particles in a simulated space environment via a technique known as Laser Particle Levitation. The combination of both a high vacuum and optical laser levitation to negate the effects of Earth's gravity, simulate the space environment. The rotation mechanism under study is known as the 'Windmill Effect,' which is a spin mechanism that suggests that the interaction of the photon field from a star with the surface irregularities of cosmic dust will cause them to spin due to the imbalance in the directionality of the scattered photons which necessitates a non-zero angular momentum. This conclusion is based on the random nature of the orientation of the sites of surface irregularities. The general object is to study the behavior of particles in orbits around the Earth, both natural and man made, as well as interplanetary and circumstellar particles. To meet this objective, an apparatus was constructed which was designed to allow optical levitation in a vacuum

    Twill: A hybrid microcontroller-FPGA framework for parallelizing single-threaded C programs

    Get PDF
    Increasingly System-On-A-Chip platforms which incorporate both microprocessors and re-programmable logic are being utilized across several fields ranging from the automotive industry to network infrastructure. Unfortunately, the development tools accompanying these products leave much to be desired, requiring knowledge of both traditional embedded systems languages like C and hardware description languages like Verilog. We propose to bridge this gap with Twill, a truly automatic hybrid compiler that can take advantage of the parallelism inherent in these platforms. Twill can extract long-running threads from single threaded C code and distribute these threads across the hardware and software domains to more fully utilize the asymmetric characteristics between processors and the embedded reconfigurable logic fabric. We show that Twill provides a significant performance increase on the CHStone benchmarks with an average 1.63 times increase over the pure hardware approach and an increase of 22.2 times on average over the pure software approach while in general decreasing the area required by the reconfigurable logic compared to the pure hardware approach

    Life Cycle Aware Computing: Reusing Silicon Technology

    Get PDF
    Despite the high costs associated with processor manufacturing, the typical chip is used for only a fraction of its expected lifetime. Reusing processors would create a food chain of electronic devices that amortizes the energy required to build chips over several computing generations

    Tile size selection for low-power tile-based architectures

    Get PDF
    In this paper, we investigate the power implications of tile size selection for tile-based processors. We refer to this investigation as a tile granularity study. This is accomplished by distilling the architectural cost of tiles with different computational widths into a system metric we call the Granularity Indicator (GI). The GI is then compared against the communications exposed when algorithms are partitioned across multiple tiles. Through this comparison, the tile granularity that best fits a given set of algorithms can be determined, reducing the system power for that set of algorithms. When the GI analysis is applied to the Synchroscalar tile architecture[1], we find that Synchroscalar\u27s already low power consumption can be further reduced by 14% when customized for execution of the 802.11a receiver. In addition, the GI can also be a used to evaluate tile size when considering multiple applications simultaneously, providing a convenient platform for hardware-software co-design

    Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding

    Get PDF
    Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10–20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breeders to improve the resistance of cultivars has been compromised by the universal finding that resistance was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a limited effect that was hard to measure precisely and varied significantly from site to site and season to season. The discovery of necrotrophic effectors has given breeding for disease resistance new methods and tools. In the case of tan spot in West Australia, a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar choice and breeding strategies. For P. nodorum, three effectors – SnToxA, SnTox1, and SnTox3 – have been well characterized. Unlike tan spot, no one effector has a dominating role. Genetic analysis of various mapping populations and pathogen isolates has shown that different effectors have varying impact and that epistatic interactions also occur. As a result of these factors the deployment of these effectors for SNB resistance breeding is more complex. We have deleted the three effectors in a strain of P. nodorum and measured effector activity and disease potential of the triple knockout mutant. The culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit the overall levels are less than in the wild type. Modeling of the field disease resistance scores of cultivars from their reactions to the microbially expressed effectors SnToxA, SnTox1, and SnTox3 is significantly improved by including the response to the triple knockout mutant culture filtrate. This indicates that one or more further effectors are secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic effectors explain a very large part of the disease response of wheat germplasm and that this method of resistance breeding promises to further reduce the impact of these globally significant diseases

    The Biological Basis of Mathematical Beauty

    Get PDF
    Our past studies have led us to divide sensory experiences, including aesthetic ones derived from sensory sources, into two broad categories: biological and artifactual. The aesthetic experience of biological beauty is dictated by inherited brain concepts, which are resistant to change even in spite of extensive experience. The experience of artifactual beauty on the other hand is determined by post-natally acquired concepts, which are modifiable throughout life by exposure to different experiences (Zeki, 2009; Zeki and Chén, 2016). Hence, in terms of aesthetic rating, biological beauty (in which we include the experience of beautiful faces or human bodies) is characterized by less variability between individuals belonging to different ethnic origins and cultural backgrounds or the same individual at different times. Artifactual beauty (in which we include the aesthetic experience of human artifacts, such as buildings and cars) is characterized by greater variability between individuals belonging to different ethnic and cultural groupings and by the same individual at different times. In this paper, we present results to show that the experience of mathematical beauty (Zeki et al., 2014), even though it constitutes an extreme example of beauty that is dependent upon (mathematical) culture and learning, is consistent with one of the characteristics of the biological categories, namely a lesser variability in terms of the aesthetic ratings given to mathematical formulae experienced as beautiful

    Characterization of Error-Tolerant Applications when Protecting Control Data

    Get PDF
    Soft errors have become a significant concern and recent studies have measured the architectural vulnerability factor of systems to such errors, or conversely, the potential that a soft error is masked by latches or other system behavior. We take soft-error tolerance one step further and examine when an application can tolerate errors that are not masked. For example, a video decoder or approximation algorithm can tolerate errors if the user is willing to accept degraded output. The key observation is that while the decoder can tolerate error in its data, it can not tolerate error in its control. We first present static analysis that protects most control operations. We examine several SPEC CPU2000 and MiBench benchmarks for error tolerance, develop fidelity measures for each, and quantify the effect of errors on fidelity. We show that protecting control is crucial to producing error-tolerance, for without this protection, many applications experience catastrophic errors (infinite execution time or crashing). Overall, our results indicate that with simple control protection, the error tolerance of many applications can provide designers with considerable added flexibility when considering future challenges posed by soft errors

    Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P \u3c 0.0001), indicating aerobic glycolysis (the Warburg effect ), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zndeficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention. © Fong et al
    • …
    corecore