53 research outputs found

    The role of Cysteine 6.47 in class A GPCRs

    Get PDF
    Background: The CWxP motif of transmembrane helix 6 (x: any residue) is highly conserved in class A GPCRs. Within this motif, W6.48 is a big star in the theory of the global "toggle switch" because of its key role in the activation mechanism of GPCRs upon ligand binding. With all footlights focused on W6.48, the reason why the preceding residue, C6.47, is largely conserved is still unknown. The present study is aimed to fill up this lack of knowledge by characterizing the role of C6.47 of the CWxP motif. Results: A complete analysis of available crystal structures has been made alongside with molecular dynamics simulations of model peptides to explore a possible structural role for C6.47. Conclusions: We conclude that C6.47 does not modulate the conformation of the TM6 proline kink and propose that C6.47 participates in the rearrangement of the TM6 and TM7 interface accompanying activation

    Inter-residue interactions in membrane proteins

    Get PDF
    Knowing the precise 3D-structure of a protein is crucial to understand its functional mechanism at the molecular level and to develop new pharmacological agents to targeting it. Nowadays only a few hundred integral membrane protein structures have been solved at high resolution due to the associated technical difficulties. In the present study we aim to characterize the main interactions in alpha and beta membrane proteins that are responsible of the maintenance of the overall structure. With this purpose, two nonredundant databases of alpha and beta transmembrane segments were constructed and analysed. The interactions that stabilize the structure of alpha and beta membrane proteins were quantified. The results reveal important differences in inter-residues interactions between alpha and beta membrane proteins. This novel structural information may be useful in predicting 3D models of proteins lacking structural information or in refining initial models of alpha and beta membrane proteins

    HomolWat : a web server tool to incorporate 'homologous' water molecules into GPCR structures

    Get PDF
    Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calculations or molecular dynamics simulations. Here we present HomolWat, a web application for incorporating water molecules into GPCR structures by using template-based modelling of homologous water molecules obtained from high-resolution structures. While there are various tools available to predict the positions of internal waters using energy-based methods, the approach of borrowing lacking water molecules from homologous GPCR structures makes HomolWat unique. The tool can incorporate water molecules into a protein structure in about a minute with around 85% of water recovery. The web server is freely available at

    Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections

    Get PDF
    The contribution of the HLA-E/NKG2X axis in NK-mediated control of HIV infection remains unclear. We have studied the relationship between HLA-E expression and phenotypical as well as functional characteristics of NK cells, in the context of chronic HIV infection and in an in vitro model of acute infection. High viremia in HIV+ individuals was related to increased HLA-E expression, and changes in NK subpopulations, especially a reduction of the CD56 bright as well as an increase in adaptive NK subpopulation. Uncontrolled HIV infection was also characterized by a reversion of the NKG2A/NKG2C expression ratio and a loss of positive and negative regulation of NK mediated by HLA-E. This was reflected in a lower cytotoxic, degranulation and cytokine production capacity, especially in CD56 bright and adaptive NK. In line with these results, HLA-E expression showed a positive correlation with viral growth inhibition in an in vitro model of acute infection at day 7, which was lost after 14 days of culture. Using HLA-E expressing K562 cells, we determined that only one out of 11 described HIV-derived HLA-E epitopes increased HLA-E surface stability. In spite of that, eight of the 11 epitopes were capable of increasing degranulation and three drove differences in NK-cell mediated cell lysis or cytokine secretion. In conclusion, our results indicate that HLA-E molecules presenting HIV-derived epitopes may sensitize target cells for NK lysis in early HIV infection. However, prolonged exposure to elevated HLA-E expression levels in vivo may lead to NK cell dysfunction and reduced viral control In chronic infection

    Epidemiologia i perfil de resistència antibiòtica de Campylobacter jejuni: Catalunya, 2016-2019

    Get PDF
    Campylobacter jejuni; Epidemiologia; Resistència antibiòticaCampylobacter jejuni; Epidemiología; Resistencia antibióticaCampylobacter jejuni; Epidemiology; Antibiotic resistanceAquest informe té com a objectiu analitzar les característiques epidemiològiques dels casos confirmats de Campylobacter jejuni i analitzar la sensibilitat antimicrobiana dels casos declarats a l’SNMC durant els anys 2016-2019

    Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function

    Get PDF
    De novo GRIN variants, encoding for the ionotropic glutamate NMDA receptor subunits, have been recently associated with GRIN-related disorders, a group of rare paediatric encephalopathies. Current investigational and clinical efforts are focused to functionally stratify GRIN variants, towards precision therapies of this primary disturbance of glutamatergic transmission that affects neuronal function and brain. In the present study, we aimed to comprehensively delineate the functional outcomes and clinical phenotypes of GRIN protein truncating variants (PTVs)—accounting for ~20% of disease-associated GRIN variants—hypothetically provoking NMDAR hypofunctionality. To tackle this question, we created a comprehensive GRIN PTVs variants database compiling a cohort of nine individuals harbouring GRIN PTVs, together with previously identified variants, to build-up an extensive GRIN PTVs repertoire composed of 293 unique variants. Genotype–phenotype correlation studies were conducted, followed by cell-based assays of selected paradigmatic GRIN PTVs and their functional annotation. Genetic and clinical phenotypes meta-analysis revealed that heterozygous GRIN1, GRIN2C, GRIN2D, GRIN3A and GRIN3B PTVs are non-pathogenic. In contrast, heterozygous GRIN2A and GRIN2B PTVs are associated with specific neurological clinical phenotypes in a subunit- and domain-dependent manner. Mechanistically, cell-based assays showed that paradigmatic pathogenic GRIN2A and GRIN2B PTVs result on a decrease of NMDAR surface expression and NMDAR-mediated currents, ultimately leading to NMDAR functional haploinsufficiency. Overall, these findings contribute to delineate GRIN PTVs genotype–phenotype association and GRIN variants stratification. Functional studies showed that GRIN2A and GRIN2B pathogenic PTVs trigger NMDAR hypofunctionality, and thus accelerate therapeutic decisions for this neurodevelopmental condition.ISCIII, cofunded by European Regional Development Fund (ERDF), a way to build Europe (grants PI19/00348 and PI16/00851); Miguel Servet Program (CPII16/00021, ISCIII) and Serra Húnter Fellow to X.A.; SAF2016-77830-R to M.O.; European Regional development Fund (ERDF)-Ministerio de Ciencia e Innovación (grant BFU2017-83317-P) and Ministerio de Ciencia e Innovación-María de Maeztu (MDM-2017-0729) to D.S. and PI18/00111 [ISCIII, cofunded by European Regional Development Fund (ERDF), a way to build Europe] to À.G.-C. and N.J.-P.; Fundación Tatiana Pérez de Guzmán el Bueno PhD fellowship to A.S.-G.; crowdfunding initiative Precipita (FECYT) to F.M

    Patient Experience in Pancreas-Kidney Transplantation-A Methodological Approach Towards Innovation in an Established Program

    Full text link
    Simultaneous pancreas-kidney transplantation (SPKT) leads to increased survival and quality of life, and is an alternative treatment for insulin-dependent diabetes mellitus and end-stage kidney disease. Due to the particularities of this population (often with multiple comorbidities) and of the surgery (only performed in a few centers), a comprehensive analysis of patients' experience along the SPKT process is crucial to improve patient care and add value to this procedure. Therefore, we applied a systematic and iterative methodology with the participation of both patients and professional teams working together to explore and identify unmet needs and value-adding steps along the transplant patient journey at an established pancreas transplant program. Four main steps (to comprehend, to explore, to experiment and to assess) led to several interventions around three major areas: Administration and logistics, information and communication, and perceived quality of assistance. As a result, both displacements to the hospital for diagnostic purposes and the time delay involved in joining the patient waiting list for transplantation were reduced in parallel to the administrative procedures. In conclusion, the methodological implementation of key organizational changes has great impact on overall patient experience. Further quantitative analysis from the patient's perspective will consolidate our program and may add new prototype service design components

    Mechanisms of CPT1C-Dependent AMPAR trafficking enhancement

    Get PDF
    In neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors. Indeed, synaptic transmission in CPT1C knockout (KO) mice is diminished supporting a positive trafficking role for that protein. However, the molecular mechanisms of such modulation remain unknown although a putative role of CPT1C in depalmitoylating GluA1 has been hypothesized. Here, we explore that possibility and show that CPT1C effect on AMPARs is likely due to changes in the palmitoylation state of GluA1. Based on in silico analysis, Ser 252, His 470 and Asp 474 are predicted to be the catalytic triad responsible for CPT1C palmitoyl thioesterase (PTE) activity. When these residues are mutated or when PTE activity is inhibited, the CPT1C effect on AMPAR trafficking is abolished, validating the CPT1C catalytic triad as being responsible for PTE activity on AMPAR. Moreover, the histidine residue (His 470) of CPT1C is crucial for the increase in GluA1 surface expression in neurons and the H470A mutation impairs the depalmitoylating catalytic activity of CPT1C. Finally, we show that CPT1C effect seems to be specific for this CPT1 isoform and it takes place solely at endoplasmic reticulum (ER). This work adds another facet to the impressive degree of molecular mechanisms regulating AMPAR physiology

    Paradigmatic de novo GRIN1 variants recapitulate pathophysiological mechanisms underlying GRIN1-related disorder clinical spectrum

    Get PDF
    Background: GRIN-related disorders (GRD), the so-called grinpathies, is a group of rare encephalopathies caused by mutations affecting GRIN genes (mostly GRIN1, GRIN2A and GRIN2B genes), which encode for the GluN subunit of the N-methyl D-aspartate (NMDA) type ionotropic glutamate receptors. A growing number of functional studies indicate that GRIN-encoded GluN1 subunit disturbances can be dichotomically classified into gain- and loss-of-function, although intermediate complex scenarios are often present. Methods: In this study, we aimed to delineate the structural and functional alterations of GRIN1 disease-associated variants, and their correlations with clinical symptoms in a Spanish cohort of 15 paediatric encephalopathy patients harbouring these variants. Results: Patients harbouring GRIN1 disease-associated variants have been clinically deeplyphenotyped. Further, using computational and in vitro approaches, we identified different critical checkpoints affecting GluN1 biogenesis (protein stability, subunit assembly and surface trafficking) and/or NMDAR biophysical properties, and their association with GRD clinical symptoms. Conclusions: Our findings show a strong correlation between GRIN1 variants-associated structural and functional outcomes. This structural-functional stratification provides relevant insights of genotypephenotype association, contributing to future precision medicine of GRIN1-related encephalo

    Mechanisms of CPT1C-Dependent AMPAR Trafficking Enhancement

    Get PDF
    In neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors. Indeed, synaptic transmission in CPT1C knockout (KO) mice is diminished supporting a positive trafficking role for that protein. However, the molecular mechanisms of such modulation remain unknown although a putative role of CPT1C in depalmitoylating GluA1 has been hypothesized. Here, we explore that possibility and show that CPT1C effect on AMPARs is likely due to changes in the palmitoylation state of GluA1. Based on in silico analysis, Ser 252, His 470 and Asp 474 are predicted to be the catalytic triad responsible for CPT1C palmitoyl thioesterase (PTE) activity. When these residues are mutated or when PTE activity is inhibited, the CPT1C effect on AMPAR trafficking is abolished, validating the CPT1C catalytic triad as being responsible for PTE activity on AMPAR. Moreover, the histidine residue (His 470) of CPT1C is crucial for the increase in GluA1 surface expression in neurons and the H470A mutation impairs the depalmitoylating catalytic activity of CPT1C. Finally, we show that CPT1C effect seems to be specific for this CPT1 isoform and it takes place solely at endoplasmic reticulum (ER). This work adds another facet to the impressive degree of molecular mechanisms regulating AMPAR physiology
    corecore