44,730 research outputs found
Dimensional-scaling estimate of the energy of a large system from that of its building blocks: Hubbard model and Fermi liquid
A simple, physically motivated, scaling hypothesis, which becomes exact in
important limits, yields estimates for the ground-state energy of large,
composed, systems in terms of the ground-state energy of its building blocks.
The concept is illustrated for the electron liquid, and the Hubbard model. By
means of this scaling argument the energy of the one-dimensional half-filled
Hubbard model is estimated from that of a 2-site Hubbard dimer, obtaining
quantitative agreement with the exact one-dimensional Bethe-Ansatz solution,
and the energies of the two- and three-dimensional half-filled Hubbard models
are estimated from the one-dimensional energy, recovering exact results for
and and coming close to Quantum Monte Carlo data for
intermediate .Comment: 3 figure
- β¦