4,480 research outputs found
On some applications of a symbolic representation of non-centered L\'evy processes
By using a symbolic technique known in the literature as the classical umbral
calculus, we characterize two classes of polynomials related to L\'evy
processes: the Kailath-Segall and the time-space harmonic polynomials. We
provide the Kailath-Segall formula in terms of cumulants and we recover simple
closed-forms for several families of polynomials with respect to not centered
L\'evy processes, such as the Hermite polynomials with the Brownian motion, the
Poisson-Charlier polynomials with the Poisson processes, the actuarial
polynomials with the Gamma processes, the first kind Meixner polynomials with
the Pascal processes, the Bernoulli, Euler and Krawtchuk polynomials with
suitable random walks
Multivariate time-space harmonic polynomials: a symbolic approach
By means of a symbolic method, in this paper we introduce a new family of
multivariate polynomials such that multivariate L\'evy processes can be dealt
with as they were martingales. In the univariate case, this family of
polynomials is known as time-space harmonic polynomials. Then, simple
closed-form expressions of some multivariate classical families of polynomials
are given. The main advantage of this symbolic representation is the plainness
of the setting which reduces to few fundamental statements but also of its
implementation in any symbolic software. The role played by cumulants is
emphasized within the generalized Hermite polynomials. The new class of
multivariate L\'evy-Sheffer systems is introduced.Comment: In pres
On the computation of classical, boolean and free cumulants
This paper introduces a simple and computationally efficient algorithm for
conversion formulae between moments and cumulants. The algorithm provides just
one formula for classical, boolean and free cumulants. This is realized by
using a suitable polynomial representation of Abel polynomials. The algorithm
relies on the classical umbral calculus, a symbolic language introduced by Rota
and Taylor in 1994, that is particularly suited to be implemented by using
software for symbolic computations. Here we give a MAPLE procedure. Comparisons
with existing procedures, especially for conversions between moments and free
cumulants, as well as examples of applications to some well-known distributions
(classical and free) end the paper.Comment: 14 pages. in press, Applied Mathematics and Computatio
- …