76 research outputs found

    New population-based exome data question the pathogenicity of some genetic variants previously associated with Marfan syndrome

    Get PDF
    BACKGROUND: Marfan syndrome (MFS) is a rare autosomal dominantly inherited connective tissue disorder with an estimated prevalence of 1:5,000. More than 1000 variants have been previously reported to be associated with MFS. However, the disease-causing effect of these variants may be questionable as many of the original studies used low number of controls. To study whether there are possible false-positive variants associated with MFS, four in silico prediction tools (SIFT, Polyphen-2, Grantham score, and conservation across species) were used to predict the pathogenicity of these variant. RESULTS: Twenty-three out of 891 previously MFS-associated variants were identified in the ESP. These variants were distributed on 100 heterozygote carriers in 6494 screened individuals. This corresponds to a genotype prevalence of 1:65 for MFS. Using a more conservative approach (cutoff value of >2 carriers in the EPS), 10 variants affected a total of 82 individuals. This gives a genotype prevalence of 1:79 (82:6494) in the ESP. A significantly higher frequency of MFS-associated variants not present in the ESP were predicted to be pathogenic with the agreement of ≥3 prediction tools, compared to the variants present in the ESP (p = 3.5 × 10(−15)). CONCLUSIONS: This study showed a higher genotype prevalence of MFS than expected from the phenotype prevalence in the general population. The high genotype prevalence suggests that these variants are not the monogenic cause of MFS. Therefore, caution should be taken with regard to disease stratification based on these previously reported MFS-associated variants

    Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.</p> <p>We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with gDNA derived from whole blood.</p> <p>Methods</p> <p>gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age 22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and gDNA samples, all coding regions and adjacent intron regions of the genes <it>SCN5A </it>and <it>KCNA5 </it>were investigated.</p> <p>Results</p> <p>Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the wgaDNA group.</p> <p>Conclusions</p> <p>The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an alternative to whole blood in sequence analysis.</p

    A 4-year follow-up of patients with medication-overuse headache previously included in a randomized multicentre study

    Get PDF
    The aim of this study was to evaluate the long-term outcome in 61 patients with medication-overuse headache (MOH) who 4 years previously had been included in a randomized open-label prospective multicentre study. Sixty patients still alive after 4 years were invited to a follow-up investigation. Fifty patients (83%) participated. Sixteen visited a neurologist, 22 were interviewed through telephone, 2 gave response by a letter, and 10 were evaluated through hospital records. The influence of baseline characteristics on outcome 4 years later was evaluated by non-parametric tests. p values below 0.01 were considered significant. At follow-up, the 50 persons had a mean reduction of 6.5 headache days/month (p < 0.001) and 9.5 acute headache medication days/month (p < 0.001) compared to baseline. Headache index/month was reduced from 449 to 321 (p < 0.001). Sixteen persons (32%) were considered as responders due to a ≥50% reduction in headache frequency from baseline, whereas 17 (34%) persons met the criteria for MOH. None of the baseline characteristics consistently influenced all five outcome measures. Total Hospital Anxiety and Depression Scale (HADS) score at baseline was predictors (p < 0.005) for being a responder after 4 years. At 4 years’ follow-up, one-third of the 50 MOH patients had ≥50% reduction in headache frequency from baseline. A low total HADS score at baseline was associated with the most favorable outcome

    Endometriosis and Headache

    Get PDF
    Headache and endometriosis show some similarities in their clinical and epidemiological features that are probably due to the influence of female sexual hormones on both disorders. Epidemiological studies indicate that they are comorbid disorders. However, the nature of the comorbidity is not known with certainty, but a likely explanation may be common susceptibility genes. Another possibility is that, because they both are related to pain, increased pain sensitivity induced by one of the disorders may lead to a higher likelihood of developing the other, possibly mediated by nitrogen oxide or prostaglandins. A common link to the widespread use of estroprogestins may seem less probable. For physicians dealing with women with either of these disorders, awareness of the comorbidity may be helpful in the treatment of the patient

    Structured headache services as the solution to the ill-health burden of headache: 1. Rationale and description

    Get PDF
    In countries where headache services exist at all, their focus is usually on specialist (tertiary) care. This is clinically and economically inappropriate: most headache disorders can effectively and more efficiently (and at lower cost) be treated in educationally supported primary care. At the same time, compartmentalizing divisions between primary, secondary and tertiary care in many health-care systems create multiple inefficiencies, confronting patients attempting to navigate these levels (the “patient journey”) with perplexing obstacles. High demand for headache care, estimated here in a needs-assessment exercise, is the biggest of the challenges to reform. It is also the principal reason why reform is necessary. The structured headache services model presented here by experts from all world regions on behalf of the Global Campaign against Headache is the suggested health-care solution to headache. It develops and refines previous proposals, responding to the challenge of high demand by basing headache services in primary care, with two supporting arguments. First, only primary care can deliver headache services equitably to the large numbers of people needing it. Second, with educational supports, they can do so effectively to most of these people. The model calls for vertical integration between care levels (primary, secondary and tertiary), and protection of the more advanced levels for the minority of patients who need them. At the same time, it is amenable to horizontal integration with other care services. It is adaptable according to the broader national or regional health services in which headache services should be embedded. It is, according to evidence and argument presented, an efficient and cost-effective model, but these are claims to be tested in formal economic analyses

    Integrated motor drives: state of the art and future trends

    Get PDF
    With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system. This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented

    Metallic, magnetic and molecular nanocontacts

    Get PDF
    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore