1,048 research outputs found
Breit-Wheeler Process in Intense Short Laser Pulses
Energy-angular distributions of electron-positron pair creation in collisions
of a laser beam and a nonlaser photon are calculated using the -matrix
formalism. The laser field is modeled as a finite pulse, similar to the
formulation introduced in our recent paper in the context of Compton scattering
[Phys. Rev. A {\bf 85}, 062102 (2012)]. The nonperturbative regime of pair
creation is considered here. The energy spectra of created particles are
compared with the corresponding spectra obtained using the modulated plane wave
approximation for the driving laser field. A very good agreement in these two
cases is observed, provided that the laser pulse is sufficiently long. For
short pulse durations, this agreement breaks down. The sensitivity of pair
production to the polarization of a driving pulse is also investigated. We show
that in the nonperturbative regime, the pair creation yields depend on the
polarization of the pulse, reaching their maximal values for the linear
polarization. Therefore, we focus on this case. Specifically, we analyze the
dependence of pair creation on the relative configuration of linear
polarizations of the laser pulse and the nonlaser photon. Lastly, we
investigate the carrier-envelope phase effect on angular distributions of
created particles, suggesting the possibility of phase control in relation to
the pair creation processes.Comment: 13 pages, 8 figure
Interior error estimate for periodic homogenization
In a previous article about the homogenization of the classical problem of
diff usion in a bounded domain with su ciently smooth boundary we proved that
the error is of order . Now, for an open set with su ciently
smooth boundary and homogeneous Dirichlet or Neuman limits conditions
we show that in any open set strongly included in the error is of order
. If the open set is of polygonal (n=2) or
polyhedral (n=3) boundary we also give the global and interrior error
estimates
Electrostatic topology of ferroelectric domains in YMnO
Trimerization-polarization domains in ferroelectric hexagonal YMnO were
resolved in all three spatial dimensions by piezoresponse force microscopy.
Their topology is dominated by electrostatic effects with a range of 100 unit
cells and reflects the unusual electrostatic origin of the spontaneous
polarization. The response of the domains to locally applied electric fields
explains difficulties in transferring YMnO into a single-domain state. Our
results demonstrate that the wealth of non-displacive mechanisms driving
ferroelectricity that emerged from the research on multiferroics are a rich
source of alternative types of domains and domain-switching phenomena
Particle dynamics inside shocks in Hamilton-Jacobi equations
Characteristics of a Hamilton-Jacobi equation can be seen as action
minimizing trajectories of fluid particles. For nonsmooth "viscosity"
solutions, which give rise to discontinuous velocity fields, this description
is usually pursued only up to the moment when trajectories hit a shock and
cease to minimize the Lagrangian action. In this paper we show that for any
convex Hamiltonian there exists a uniquely defined canonical global nonsmooth
coalescing flow that extends particle trajectories and determines dynamics
inside the shocks. We also provide a variational description of the
corresponding effective velocity field inside shocks, and discuss relation to
the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series
DarkSide status and prospects
DarkSide uses a dual-phase Liquid Argon Time Projection Chamber to search for WIMP dark matter. The current detector, DarkSide-50, is running since mid 2015 with a target of 50 kg of Argon from an underground sourc
Homogenization of Maxwell's equations in periodic composites
We consider the problem of homogenizing the Maxwell equations for periodic
composites. The analysis is based on Bloch-Floquet theory. We calculate
explicitly the reflection coefficient for a half-space, and derive and
implement a computationally-efficient continued-fraction expansion for the
effective permittivity. Our results are illustrated by numerical computations
for the case of two-dimensional systems. The homogenization theory of this
paper is designed to predict various physically-measurable quantities rather
than to simply approximate certain coefficients in a PDE.Comment: Significantly expanded compared to v1. Accepted to Phys.Rev.E. Some
color figures in this preprint may be easier to read because here we utilize
solid color lines, which are indistinguishable in black-and-white printin
IMMUNOLOGICAL MEMORY: THE ROLE OF REGULATORY CELLS (TREGS)
Memory T cells are necessary for development of the immune response and represent one of the most numerous population of human T lymphocytes. On the contrary, suppressive regulatory T cells (Tregs) may terminate the immune response and help to maintain tolerance to self-antigens. These important groups of cells are consisting of different subpopulations and retaining throughout life. However, today there is yet no clear understanding of how the relations between these two groups of cells are formed. In this work we consider possible ways of development and maintenance of CD4+ T cell memory and role of Tregs in these processes. Mechanisms of a differentiation of memory T cells, Tregs and recently described memory Tregs are discussed. The functional and genetic characteristics of these cells are compared. Division of cells according to the functional profile allows drawing parallels between memory T cells and Tregs. These two groups are consisted of central circulating populations (Tc), effector which can migrate toward specific tissues (Te) and tissue-resident cells (Tr), which are staying in peripheral tissues. The similar structural organization of Tregs and memory T cells, existence of transitional forms of tissue-resident Treg subpopulations with properties of memory cells assumes existence of close interrelation between these groups of lymphocytes. The conversion of CD4+ memory T cells into FoxP3-expressing Tregs is one of possible mechanisms of communication between these two groups. The memory Treg-cells with T cell and memory Treg-cell properties can represent a transitional stage of differentiation. On the other side, Treg cells can differentiate independently of memory T cells and accumulate during life in the form of memory Treg cells. The supressor function of Tregs is also necessary as well as function of memory T cells to develop the immune response. It is possible, that a subset of Treg cells undergoes selection in thymus and constitutively express TCR-receptors having affinity with peripheral tissues. Further, these committed cells can be settled into tissues and become tissue-resident Treg cells which maintain regional T cell memory. Tregs can represent the “mirror image” of the structural organization of memory T cells, but with the return sign – the sign of suppression. The quantitative ratio of Tregs and memory T cells (CD4+CD45RO+CD25hiFoxP3+/CD4+CD45RO+CD25-FoxP3-), perhaps, is important criterion for functional assessment of immune system. The balance between these functionally opposite cell subsets has to provide stable functioning of immune system
- …