11 research outputs found
Differential constraints and exact solutions of nonlinear diffusion equations
The differential constraints are applied to obtain explicit solutions of
nonlinear diffusion equations. Certain linear determining equations with
parameters are used to find such differential constraints. They generalize the
determining equations used in the search for classical Lie symmetries
Application of the B-Determining Equations Method to One Problem of Free Turbulence
A three-dimensional model of the far turbulent wake behind a self-propelled body in a passively stratified medium is considered. The model is reduced to a system of ordinary differential equations by a similarity reduction and the B-determining equations method. The system of ordinary differential equations satisfying natural boundary conditions is solved numerically. The solutions obtained here are in close agreement with experimental data
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ²
A method for constructing solutions of nonlinear partial differential equations with two independent
variables is proposed. The method is based on the search for so-called intermediate systems, each solution
of which satisfies the initial equation. The main attention is paid to a second order nonlinear wave
equation. We give examples of intermediate systems and corresponding solutions.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π² ΡΠ°ΡΡΠ½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Ρ
Π΄Π²ΡΠΌΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΠΏΠΎΠΈΡΠΊΠ΅ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΡ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈ
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ²
A method for constructing solutions of nonlinear partial differential equations with two independent
variables is proposed. The method is based on the search for so-called intermediate systems, each solution
of which satisfies the initial equation. The main attention is paid to a second order nonlinear wave
equation. We give examples of intermediate systems and corresponding solutions.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π² ΡΠ°ΡΡΠ½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Ρ
Π΄Π²ΡΠΌΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΠΏΠΎΠΈΡΠΊΠ΅ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΡ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈ
Π‘ΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΈΠ΄Π΅Π°Π»ΠΎΠ² ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
The paper deals with differential rings and partial differential equations with coefficients in some algebra.
We introduce symmetries and the conservation laws to the differential ideal of an arbitrary differential
ring. We prove that a set of symmetries of an ideal forms a Lie ring and give a precise criterion when
a differentiation is a symmetry of an ideal. These concepts are applied to partial differential equationsΠ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠ»ΡΡΠ° ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ Ρ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΊΠΎΠ»ΡΡΠ΅. ΠΠ²ΠΎΠ΄ΡΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ΄Π΅Π°Π»Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡΡΠ°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΉ
ΠΈΠ΄Π΅Π°Π»Π° ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΊΠΎΠ»ΡΡΠΎ ΠΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠ΅ΠΉ ΠΈΠ΄Π΅Π°Π»Π°. ΠΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ Π² ΡΠ°ΡΡΠ½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΠΉΠ»Π΅ΡΠ° Π½Π΅Π²ΡΠ·ΠΊΠΎΠΉ Π½Π΅ΡΠΆΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ
We consider a system of two-dimensional Euler equations describing the motions of an
inviscid incompressible fluid. It reduces to one non-linear equation with partial derivatives of the third
order. A group of point transformations allowed by this equation is found. Some invariant solutions and
solutions not related to invariance are constructed. The solutions found describe vortices, jet streams,
and vortex-like formationsΠ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ°Π΅ΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠΉΠ»Π΅ΡΠ°, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ°Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π½Π΅Π²ΡΠ·ΠΊΠΎΠΉ Π½Π΅ΡΠΆΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ. ΠΠ½Π° ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΠ°ΠΉΠ΄Π΅Π½Π° Π³ΡΡΠΏΠΏΠ° ΡΠΎΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Π΄ΠΎΠΏΡΡΠΊΠ°Π΅ΠΌΡΡ
ΡΡΠΈΠΌ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ. ΠΠΎΡΡΡΠΎΠ΅Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡΡ. ΠΠ°ΠΉΠ΄Π΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΠΈΡ
ΡΠΈ, ΡΡΡΡΠΉΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ Π²ΠΈΡ
ΡΠ΅ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈ
ΠΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ Π³ΡΡΠΏΠΏΡ ΡΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
In this paper, we consider the problem of formal iteration. We construct an area preserving
mapping which does not have any square root. This leads to a counterexample to Moserβs existence
theorem for an interpolation problem. We give examples of formal transformation groups such that the
iteration problem has a solution for every element of the groupsΠ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π·Π°Π΄Π°ΡΠ° ΡΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ. Π‘ΡΡΠΎΠΈΡΡΡ ΡΠΎΡ
ΡΠ°Π½ΡΡΡΠ΅Π΅ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ Π΄ΠΎΠΏΡΡΠΊΠ°Π΅Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ, ΡΡΠΎ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ,
ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΊΠΎΠ½ΡΡΠΏΡΠΈΠΌΠ΅ΡΡ β ΠΊ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΎΠ·Π΅ΡΠ° Π΄Π»Ρ Π·Π°Π΄Π°ΡΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΠΎΠ»ΡΡΠΈΠΈ. ΠΠ°Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ Π³ΡΡΠΏΠΏ
ΡΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ
Π·Π°Π΄Π°ΡΠ° ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Π³ΡΡΠΏΠΏ
Π‘ΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ
Higher symmetries and operator symmetries of linear partial differential equations are
considered The higher symmetries form a Lie algebra, and operator ones form an associative algebra.
The relationship between these symmetries is established. New symmetries of two-dimensional stationary
equations of gas dynamics are foundΠ Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΡ Π²ΡΡΡΠΈΡ
ΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ½ΡΡ
ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ. ΠΠΏΠ΅ΡΠ°ΡΠΎΡΡ Π²ΡΡΡΠΈΡ
ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΉ ΠΎΠ±ΡΠ°Π·ΡΡΡ Π°Π»Π³Π΅Π±ΡΡ ΠΠΈ, Π° ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ½ΡΠ΅ -
Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠ²Π½ΡΡ Π°Π»Π³Π΅Π±ΡΡ. Π£ΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠΌΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠΌΠΈ. ΠΠ°ΠΉΠ΄Π΅Π½Ρ Π½ΠΎΠ²ΡΠ΅ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΡ
ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊ