7 research outputs found

    Vertically Aligned Carbon Nanotubes Production by PECVD

    Get PDF
    This chapter presents the results of experimental studies of the PECVD technological mode parameters’ influence on the formation of catalytic centers and carbon nanotubes’ (CNTs’) growth processes. This chapter also presents the ability to regulate the growth parameter for the controlled production of CNTs with the required geometric parameters, properties, and growth mechanisms. The results of experimental studies of the heating temperature and activation time effects on the catalytic center formation will be presented. This chapter also shows the effects of growth temperature, heating rate, and the activation time on the geometric and structural parameters of the carbon nanotubes. Experimental studies were carried out with the use of AFM, SEM, TEM, and EXAFS techniques. The results can be used in the development of technological processes for creating ultrafast energy-efficient electronic component base with carbon nanostructures, particularly nanoelectromechanical switches, flexo- and piezoelectric generators, gas sensors, and high-performance emitters

    Application of Probe Nanotechnologies for Memristor Structures Formation and Characterization

    Get PDF
    This chapter presents the results of experimental studies of the formation and investigation of the memristors by probe nanotechnologies. This chapter also perspectives and possibilities of application of local anodic oxidation and scratching probe nanolithography for the manufacture of memristors based on titanium oxide structures, nanocrystalline ZnO thin film, and vertically aligned carbon nanotubes. Memristive properties of vertically aligned carbon nanotubes, titanium oxide, and ZnO nanostructures were investigated by scanning probe microscopy methods. It is shown that nanocrystalline ZnO films manifest a stable memristor effect slightly dependent on its morphology. Titanium oxide nanoscale structures of different thicknesses obtained by local anodic oxidation demonstrate a memristive effect without the need to perform any additional electroforming operations. This experimentally confirmed the memristive switching of a two-electrode structure based on a vertically aligned carbon nanotube. These results can be used in the development of designs and technological processes of resistive random access memory (ReRAM) units based on the memristor devices

    Scanning Probe Techniques for Characterization of Vertically Aligned Carbon Nanotubes

    Get PDF
    This chapter presents the results of experimental studies of the electrical, mechanical and geometric parameters of vertically aligned carbon nanotubes (VA CNTs) using scanning probe microscopy (SPM). This chapter also presents the features and difficulties of characterization of VA CNTs in different scanning modes of the SPM. Advanced techniques for VA CNT characterization (the height, Young’s modulus, resistivity, adhesion and piezoelectric response) taking into account the features of the SPM modes are described. The proposed techniques allow to overcome the difficulties associated with the vertical orientation and high aspect ratio of nanotubes in determining the electrical and mechanical parameters of the VA CNTs by standard methods. The results can be used in the development of diagnostic methods as well as in nanoelectronics and nanosystem devices based on vertically aligned carbon nanotubes (memory elements, adhesive structures, nanoelectromechanical switches, emission structures, etc.)

    Analysis of the Piezoelectric Properties of Aligned Multi-Walled Carbon Nanotubes

    No full text
    Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs. An original technique for evaluating the effective piezoelectric coefficient of CNTs is presented. For the first time, in this study, we investigate the influence of the growth temperature and thickness of the catalytic Ni layer on the value of the piezoelectric coefficient of CNTs. We establish the relationship between the effective piezoelectric coefficient of CNTs and their defectiveness and diameter, which determines the curvature of the graphene sheet surface. The calculated values of the effective piezoelectric coefficient of CNTs are shown to be between 0.019 and 0.413 C/m2, depending on the degree of their defectiveness and diameter

    Piezoelectric Response of Multi-Walled Carbon Nanotubes

    No full text
    Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices

    Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes

    No full text
    The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a key factor in the efficiency of the piezoelectric response for this material. It is shown that the XPS method makes it possible to estimate the concentration and type of nitrogen incorporation (qualitatively and quantitatively) in the “N-CNT/Mo electrode” system using both synchrotron and laboratory sources. The obtained results allow us to study the effect of the nickel catalytic layer thickness on the concentration of pyridine/pyrrole-like nitrogen and piezoelectric response in the nanotubes

    Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage

    No full text
    Here, we report a new photosensitive metal–organic framework (MOF) that was constructed via the modification of UiO-66-NH2 with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crystalline porous compound. The photoresponse of the modified MOF was observed via UV–Vis and IR spectroscopy. Most of the DAE molecules inside of the UiO-66-pores had an open conformation after synthesis. However, the equilibrium was able to be shifted further toward an open conformation using visible light irradiation with a wavelength of 520 nm. Conversely, UV-light with a wavelength of 450 nm initiated the transformation of the photoresponsive moieties inside of the pores to a closed modification. We have shown that this transformation could be used to stimulate hydrogen adsorption–desorption processes. Specifically, visible light irradiation increased the H2 capacity of modified MOF, while UV-light decreased it. A similar hybrid material with DAE moieties in the UiO-66 scaffold was applied for hydrogen storage for the first time. Additionally, the obtained results are promising for smart H2 storage that is able to be managed via light stimuli
    corecore