9 research outputs found
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
Measurement of the atmospheric muon charge ratio with the OPERA detector
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used
to measure the atmospheric muon charge ratio in the TeV energy region. We
analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime
during the 2008 CNGS run. We computed separately the muon charge ratio for
single and for multiple muon events in order to select different energy regions
of the primary cosmic ray spectrum and to test the charge ratio dependence on
the primary composition. The measured charge ratio values were corrected taking
into account the charge-misidentification errors. Data have also been grouped
in five bins of the "vertical surface energy". A fit to a simplified model of
muon production in the atmosphere allowed the determination of the pion and
kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
Measurement of the atmospheric muon charge ratio with the OPERA detector
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio R(mu) = N(mu)+/N(mu)- in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the R(mu) dependence on the primary composition. The measured R(mu) values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy" epsilon(mu) cos theta. A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum