293 research outputs found

    Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    Get PDF
    Background: To overcome the increasing resistance of pathogens to existing antibiotics the 10× 20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens

    Factors regulating Hb F synthesis in thalassemic diseases

    Get PDF
    BACKGROUND: The thalassemic syndromes originate from mutations of the globin genes that cause, besides the characteristic clinical picture, also an increased Hb F amount. It is not yet clear if there are more factors, besides the beta globin genotype, determining the Hb F production. We have tried to find out if there are relations between total Hb and Hb F, between erythropoietin (Epo) and Hb F, between Hb F and point mutations of the gamma gene promoters. MATERIALS AND METHODS: Hematologic parameters, iron status, alpha/non-alpha globin ratio, Epo level, and thalassemic defects of the alpha-, beta-, and gamma-globin genes were explored using standard methods in patients affected by thalassemic diseases. Ninety-five non thalassemic individuals have been examined as controls. RESULTS: Two clinical variants of beta-thalassemia intermedia referred to as beta-thal int sub-silent and evident are associated with distinct sets of mutations of the beta-globin gene. Silent beta thal mutations are invariably associated with sub-silent beta thal int; beta° or severe beta(+) thal mutations are associated with evident beta thal int (88%) and almost invariably (98%) with thalassemia major. A positive correlation was observed between the severity of the disease and the Hb F level, but no correlation was found between the Hb F and erythropoietin (Epo) level. The mutation Ggamma -158 C→T was detected in 26.9% of patients affected by beta-thal int sub-silent and evident, respectively, but only in 2% of patients with thalassemia major. CONCLUSIONS: The severity of beta-thal int and the increased Hb F level are strictly dependent from the type of beta-globin gene mutations. No relation is found between Hb F synthesis and Epo secretion. The mutation Ggamma -158 C→T, common among patients affected by beta-thal int and very rare in thal major patients, does not seem, in this study, to influence the Hb F content in beta thal int patients

    Proteomic Profile of Reversible Protein Oxidation Using PROP, Purification of Reversibly Oxidized Proteins

    Get PDF
    Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells

    Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    Get PDF
    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Virtual environments as memory training devices in navigational tasks for older adults.

    Get PDF
    Cognitive training approaches using virtual environments (VEs) might counter age-related visuospatial memory decline and associated difficulties in wayfinding. However, the effects of the visual design of a VE in route learning are not fully understood. Therefore, we created a custom-designed VE optimized for route learning, with adjusted levels of realism and highlighted landmark locations (MixedVE). Herein we tested participants' route recall performance in identifying direction of turn at the intersection with this MixedVE against two baseline alternatives (AbstractVE, RealisticVE). An older vs. a younger group solved the tasks in two stages (immediate vs. delayed recall by one week). Our results demonstrate that the MixedVE facilitates better recall accuracy than the other two VEs for both age groups. Importantly, this pattern persists a week later. Additionally, our older participants were mostly overconfident in their route recall performance, but the MixedVE moderated this potentially detrimental overconfidence. Before the experiment, participants clearly preferred the RealisticVE, whereas after the experiment, most of the younger, and many of the older participants, preferred the MixedVE. Taken together, our findings provide insights into the importance of tailoring visualization design in route learning with VEs. Furthermore, we demonstrate the great potential of the MixedVE and by extension, of similar VEs as memory training devices for route learning, especially for older participants

    Sperm protein 17 is expressed in human nervous system tumours

    Get PDF
    BACKGROUND: Human sperm protein 17 (Sp17) is a highly conserved protein that was originally isolated from a rabbit epididymal sperm membrane and testis membrane pellet. It has recently been included in the cancer/testis (CT) antigen family, and shown to be expressed in multiple myeloma and ovarian cancer. We investigated its immunolocalisation in specimens of nervous system (NS) malignancies, in order to establish its usefulness as a target for tumour-vaccine strategies. METHODS: The expression of Sp17 was assessed by means of a standardised immunohistochemical procedure [(mAb/antigen) MF1/Sp17] in formalin-fixed and paraffin embedded surgical specimens of NS malignancies, including 28 neuroectodermal primary tumours (6 astrocytomas, 16 glioblastoma multiforme, 5 oligodendrogliomas, and 1 ependymoma), 25 meningeal tumours, and five peripheral nerve sheath tumours (4 schwannomas, and 1 neurofibroma),. RESULTS: A number of neuroectodermal (21%) and meningeal tumours (4%) were found heterogeneously immunopositive for Sp17. None of the peripheral nerve sheath tumours was immunopositive for Sp17. The expression pattern was heterogeneous in all of the positive samples, and did not correlate with the degree of malignancy. CONCLUSION: The frequency of expression and non-uniform cell distribution of Sp17 suggest that it cannot be used as a unique immunotherapeutic target in NS cancer. However, our results do show the immunolocalisation of Sp17 in a proportion of NS tumour cells, but not in their non-pathological counterparts. The emerging complex function of Sp17 makes further studies necessary to clarify the link between it and immunopositive cells

    Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby

    Get PDF
    Background: The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby.Results: We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed.Conclusion: This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system

    Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond

    Get PDF
    Many assays to evaluate the nature, breadth, and quality of antigen-specific T cell responses are currently applied in human medicine. In most cases, assay-related protocols are developed on an individual laboratory basis, resulting in a large number of different protocols being applied worldwide. Together with the inherent complexity of cellular assays, this leads to unnecessary limitations in the ability to compare results generated across institutions. Over the past few years a number of critical assay parameters have been identified which influence test performance irrespective of protocol, material, and reagents used. Describing these critical factors as an integral part of any published report will both facilitate the comparison of data generated across institutions and lead to improvements in the assays themselves. To this end, the Minimal Information About T Cell Assays (MIATA) project was initiated. The objective of MIATA is to achieve a broad consensus on which T cell assay parameters should be reported in scientific publications and to propose a mechanism for reporting these in a systematic manner. To add maximum value for the scientific community, a step-wise, open, and field-spanning approach has been taken to achieve technical precision, user-friendliness, adequate incorporation of concerns, and high acceptance among peers. Here, we describe the past, present, and future perspectives of the MIATA project. We suggest that the approach taken can be generically applied to projects in which a broad consensus has to be reached among scientists working in fragmented fields, such as immunology. An additional objective of this undertaking is to engage the broader scientific community to comment on MIATA and to become an active participant in the project
    corecore