5 research outputs found

    Wave–sea-ice interactions in a brittle rheological framework

    No full text
    As sea ice extent decreases in the Arctic, surface ocean waves have more time and space to develop and grow, exposing the marginal ice zone (MIZ) to more frequent and more energetic wave events. Waves can fragment the ice cover over tens of kilometres, and the prospect of increasing wave activity has sparked recent interest in the interactions between wave-induced sea ice fragmentation and lateral melting. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell elasto-brittle rheology. This rheological framework enables the model to efficiently track and keep a “memory” of the level of sea ice damage. We propose that the level of sea ice damage increases when wave-induced fragmentation occurs. We used this coupled modelling system to investigate the potential impact of such a local mechanism on sea ice kinematics. Focusing on the Barents Sea, we found that the internal stress decrease of sea ice resulting from its fragmentation by waves resulted in a more dynamical MIZ, particularly in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by the ocean, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic

    Driving Mechanisms of an Extreme Winter Sea Ice Breakup Event in the Beaufort Sea

    No full text
    The thick multiyear sea ice that once covered large parts of the Arctic is increasingly being replaced by thinner and weaker first-year ice, making it more vulnerable to breakup by winds. We use the neXtSIM sea ice model to investigate the driving mechanisms behind a large breakup event in the Beaufort Sea during winter 2013. Our simulations are the first to successfully reproduce the timing, location, and propagation of sea ice leads associated with wind-driven breakup and highlight the importance of accuracy of the atmospheric forcing, sea ice rheology, and changes in sea ice thickness. We found that the breakup resulted in enhanced export of multiyear ice from the Beaufort Sea. Overall, this leads to a relatively thinner and weaker simulated ice cover that potentially preconditions earlier breakup in spring and accelerates sea ice loss. Finally, our simulations indicate that large breakup events could become more frequent as Arctic sea ice continues to thin

    Knowledge Gaps and Impact of Future Satellite Missions to Facilitate Monitoring of Changes in the Arctic Ocean

    Get PDF
    Polar-orbiting satellite observations are of fundamental importance to explore the main scientific challenges in the Arctic Ocean, as they provide information on bio-geo-physical variables with a denser spatial and temporal coverage than in-situ instruments in such a harsh and inaccessible environment. However, they are limited by the lack of coverage near the North Pole (Polar gap), the polar night, and frequent cloud cover or haze over the ocean and sea ice, which prevent the use of optical satellite instruments, as well as by the limited availability of external validation data. The satellite sensors’ coverage and repeat cycles may also have limitations in properly identifying and resolving the dominant spatial and temporal scales of atmospheric, ocean, cryosphere and land variability and their interactive processes and feedback mechanisms. In this paper, we provide a state of the art of contribution of satellite observations to the understanding of the polar environment and climate scientific challenges tackled within the Arktalas Hoavva project funded by the European Space Agency. We identify the current limitations to the wider use of polar orbiting remote sensing data, as well as the observational gaps of the existing satellite missions. A comprehensive overview of all satellite missions and applications is given provided with a primary focus on the European satellites. Finally, we assess the expected capability of the approved future satellite missions to answer today’s scientific challenges in the Arctic Ocean

    Evaluating simulated linear kinematic features in high-resolution sea-ice simulations of the FAMOS Sea Ice rheology experiments (SIREx)

    No full text
    Simulating sea-ice drift and deformation in the Arctic Ocean is still a challenge because of the multi-scale interaction of sea-ice floes that compose the Arctic sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project formed within the Forum of Arctic Modeling and Observational Synthesis (FAMOS) to collect and design skill metrics to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) and provide guidance for modeling small-scale deformation. In this contribution, spatial and temporal properties of LKFs are assessed in 33 simulations of state-of-the-art sea ice models (VP/EVP,EAP, and MEB) and compared to deformation features derived from RADARSAT Geophysical Processor System (RGPS). All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, lifetimes, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric forcing affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≀2km) the concentration and thickness anomalies along LKFs are large enough to affect air-ice-ocean interaction processes
    corecore