11 research outputs found

    Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs

    Get PDF
    Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs

    Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration

    No full text
    In several retinal degenerative diseases, including age-related macular degeneration, the retinal pigment epithelium, a highly functionalized cell monolayer, becomes dysfunctional. These retinal diseases are marked by early retinal pigment epithelium dysfunction reducing its ability to maintain a healthy retina, hence making the retinal pigment epithelium an attractive target for treatment. Cell therapies, including bolus cell injections, have been investigated with mixed results. Since bolus cell injection does not promote the proper monolayer architecture, scaffolds seeded with retinal pigment epithelium cells and then implanted have been increasingly investigated. Such cell-seeded scaffolds address both the dysfunction of the retinal pigment epithelium cells and age-related retinal changes that inhibit the efficacy of cell-only therapies. Currently, several groups are investigating retinal therapies using seeded cells from a number of cell sources on a variety of scaffolds, such as degradable, non-degradable, natural, and artificial substrates. This review describes the variety of scaffolds that have been developed for the implantation of retinal pigment epithelium cells

    The biomechanical effects of limb lengthening and botulinum toxin type A on rabbit tendon

    No full text
    Numerous studies have examined the effects of distraction osteogenesis (DO) on bone, but relatively fewer have explored muscle adaptation, and even less have addressed the concomitant alterations that occur in the tendon. The purpose herein was to characterize the biomechanical properties of normal and elongated rabbit ( N=20) tendons with and without prophylactic botulinum toxin type A (BTX-A) treatment. Elastic and viscoelastic properties of Achilles and Tibialis anterior (TA) tendons were evaluated through pull to failure and stress relaxation tests. All TA tendons displayed nonlinear viscoelastic responses that were strain dependent. A power law formulation was used to model tendon viscoelastic responses and tendon elastic responses were fit with a microstructural model. Distraction-elongated tendons displayed increases in compliance and stress relaxation rates over undistracted tendons; BTX-A administration offset this result. The elastic moduli of distraction-lengthened TA tendons were diminished ( p=0.010) when distraction was combined with gastrocnemius (GA) BTX-A administration, elastic moduli were further decreased ( p=0.004) and distraction following TA BTX-A administration resulted in TA tendons with moduli not different from contralateral control ( p>0.05). Compared to contralateral control, distraction and GA BTX-A administration displayed shortened toe regions, ( p=0.031 and 0.038, respectively), while tendons receiving BTX-A in the TA had no differences in the toe region ( p>0.05). Ultimate tensile stress was unaltered by DO, but stress at the transition from the toe to the linear region of the stress–stretch curve was diminished in all distraction-elongated TA tendons ( p<0.05). The data suggest that prophylactic BTX-A treatment to the TA protects some tendon biomechanical properties

    The effect of low-magnitude, high-frequency vibration on poly(ethylene glycol)-microencapsulated mesenchymal stem cells

    No full text
    Low-magnitude, high-frequency vibration has stimulated osteogenesis in mesenchymal stem cells when these cells were cultured in certain types of three-dimensional environments. However, results of osteogenesis are conflicting with some reports showing no effect of vibration at all. A large number of vibration studies using three-dimensional scaffolds employ scaffolds derived from natural sources. Since these natural sources potentially have inherent biochemical and microarchitectural cues, we explored the effect of low-magnitude, high-frequency vibration at low, medium, and high accelerations when mesenchymal stem cells were encapsulated in poly(ethylene glycol) diacrylate microspheres. Low and medium accelerations enhanced osteogenesis in mesenchymal stem cells while high accelerations inhibited it. These studies demonstrate that the isolated effect of vibration alone induces osteogenesis

    Biomanufacturing for clinically advanced cell therapies

    No full text
    The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use

    Hydrogel Microsphere Encapsulation of a Cell-Based Gene Therapy System Increases Cell Survival of Injected Cells, Transgene Expression, and Bone Volume in a Model of Heterotopic Ossification

    No full text
    Bone morphogenetic proteins (BMPs) are well known for their osteoinductive activity, yet harnessing this capacity remains a high-priority research focus. We present a novel technology that delivers high BMP-2 levels at targeted locations for rapid endochondral bone formation, enhancing our preexisting cell-based gene therapy system by microencapsulating adenovirus-transduced cells in nondegradable poly(ethylene glycol) diacrylate (PEGDA) hydrogels before intramuscular delivery. This study evaluates the in vitro and in vivo viability, gene expression, and bone formation from transgenic fibroblasts encapsulated in PEGDA microspheres. Fluorescent viability and cytotoxicity assays demonstrated >95% viability in microencapsulated cells. ELISA and alkaline phosphatase assays established that BMP-2 secretion and specific activity from microencapsulated AdBMP2-transduced fibroblasts were not statistically different from monolayer. Longitudinal transgene expression studies of AdDsRed-transduced fibroblasts, followed through live animal optical fluorescent imaging, showed that microencapsulated cells expressed longer than unencapsulated cells. When comparable numbers of microencapsulated AdBMP2-transduced cells were intramuscularly injected into mice, microcomputed tomography evaluation demonstrated that the resultant heterotopic bone formation was approximately twice the volume of unencapsulated cells. The data suggest that microencapsulation protects cells and prolongs and spatially distributes transgene expression. Thus, incorporation of PEGDA hydrogels significantly advances current gene therapy bone repair approaches
    corecore