473 research outputs found
A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Systematic Palaeontology 10 (2012): 423-433, doi:10.1080/14772019.2011.607193.A new gastropod, Kaneconcha knorri gen et sp. nov., was found in marlstone dredged
from the surface of Adam Dome at Kane Megamullion on the flank of the Mid-Atlantic
Ridge in an area of former hydrothermal activity. The snail is interpreted as a large
provannid similar to the chemosymbiotic genera Ifremeria and Alviniconcha. This is the
first record of presumably chemosymbiotic provannids from the Atlantic Ocean and also
the first fossil record of such large provannids associated with hydrothermal venting.
Extant Alviniconcha and Ifremeria are endemic to hydrothermal vents in the Pacific and
Indian oceans. Kaneconcha differs from Ifremeria in having no umbilicus and a posterior
notch, and it differs from Alviniconcha in having the profile of the whorl slightly
flattened and having no callus on the inner lip. A dark layer covering the Kaneconcha
shell is interpreted here as a fossilized periostracum. The shell/periostracum interface
shows fungal traces attributed to the ichnospecies Saccomorpha clava. We hypothesize
that large chemosymbiotic provannids (i.e., Kaneconcha, Ifremeria, and Alviniconcha)
form a clade that possibly diverged from remaining provannids in the Late Jurassic, with
the Late Jurassic/Early Cretaceous Paskentana being an early member.R/V Knorr Cruise 180-
2 to Kane Megamullion was supported by National Science Foundation grant OCE-
0118445. A. Kaim acknowledges support from the Alexander von Humboldt Foundation.
B. Tucholke acknowledges support from an Andrew W. Mellon Foundation Award for
Innovative Research and from the Deep Ocean Exploration Institute at Woods Hole
Oceanographic Institution
Activation of Src Mediates PDGF-Induced Smad1 Phosphorylation and Contributes to the Progression of Glomerulosclerosis in Glomerulonephritis
Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen (Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-Smad1 (pSmad1), Col4, and smooth muscle α-actin (SMA) revealed that the activation of c-Src and Smad1 signals in glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4, and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover, the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4. These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development of glomerulosclerosis in experimental glomerulonephritis
Phylogeny and Diversification Patterns among Vesicomyid Bivalves
Vesicomyid bivalves are among the most abundant and diverse symbiotic taxa in chemosynthetic-based ecosystems: more than 100 different vesicomyid species have been described so far. In the present study, we investigated the phylogenetic positioning of recently described vesicomyid species from the Gulf of Guinea and their western Atlantic and Pacific counterparts using mitochondrial DNA sequence data. The maximum-likelihood (ML) tree provided limited support for the recent taxonomic revision of vesicomyids based on morphological criteria; nevertheless, most of the newly sequenced specimens did not cluster with their morphological conspecifics. Moreover, the observed lack of geographic clustering suggests the occurrence of independent radiations followed by worldwide dispersal. Ancestral character state reconstruction showed a significant correlation between the characters “depth” and “habitat” and the reconstructed ML phylogeny suggesting possible recurrent events of ‘stepwise speciation’ from shallow to deep waters in different ocean basins. This is consistent with genus or species bathymetric segregation observed from recent taxonomic studies. Altogether, our results highlight the need for ongoing re-evaluation of the morphological characters used to identify vesicomyid bivalves
Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice
BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run
We present a search for dark photon dark matter that could couple to
gravitational-wave interferometers using data from Advanced LIGO and Virgo's
third observing run. To perform this analysis, we use two methods, one based on
cross-correlation of the strain channels in the two nearly aligned LIGO
detectors, and one that looks for excess power in the strain channels of the
LIGO and Virgo detectors. The excess power method optimizes the Fourier
Transform coherence time as a function of frequency, to account for the
expected signal width due to Doppler modulations. We do not find any evidence
of dark photon dark matter with a mass between eV/, which corresponds to frequencies between 10-2000
Hz, and therefore provide upper limits on the square of the minimum coupling of
dark photons to baryons, i.e. dark matter. For the
cross-correlation method, the best median constraint on the squared coupling is
at eV/; for the
other analysis, the best constraint is at eV/. These limits improve upon those obtained
in direct dark matter detection experiments by a factor of for
eV/, and are, in absolute terms, the
most stringent constraint so far in a large mass range eV/.Comment: 20 pages, 7 figure
- …